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We study identification in a class of linear rational expectations models. For any given
exactly identified model, we provide an algorithm that generates a class of equivalent
models that have the same reduced form. We use our algorithm to show that a model
proposed by Jess Benhabib and Roger Farmer is observationally equivalent to the
standard new-Keynesian model when observed over a single policy regime. However,
the two models have different implications for the design of an optimal policy rule.
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1. INTRODUCTION

It is my view, however, that rational expectations is more deeply subversive of
identification than has yet been recognized.

Christopher A. Sims, Macroeconomics and Reality, 1980, p. 7.

This quotation is now 25 years old, but it has weathered well. It appeared in a
paper that introduced vector autoregressions as an alternative to structural models
at a time when the rational expectations agenda was in its infancy. A quarter of a
century later, applied macroeconomists continue to estimate structural equations
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without paying careful attention to the identifying assumptions that one requires
for a particular equation to make sense.

One popular approach to estimation of an equation that includes expectations
of future variables is to replace the expectations by their realized values and
to estimate the model using instrumental variables. This method, first discussed
by McCallum (1976), has been widely used in recent work on applied monetary
economics to estimate the parameters of one or more equations in a new-Keynesian
model of the monetary transmission mechanism.1 Although it is possible to es-
timate a single equation using instruments, the assumptions that are necessary
to make any particular identification valid in the context of a complete structural
model are rarely spelled out.2 In this paper we show that the new-Keynesian
identifying assumptions are at best untestable, and we provide a credible alterna-
tive identification scheme that provides a different answer to an important policy
question: Should monetary policy be active or passive?

Our paper is organized as follows. Section 2 introduces a class of linear rational
expectations models and defines the concepts of observational equivalence and
identification. Section 3 contains our main example. We present a new-Keynesian
model and show that an alternative explicit microeconomic theory of the monetary
transmission mechanism due to Benhabib and Farmer (2000) has the same reduced
form. This is a problem for the policy maker because the two observationally
equivalent models have different determinacy properties and, therefore, different
policy implications. In Section 4 we present the algorithm that we used to construct
this example. Section 5 wraps up with a short conclusion.

2. IDENTIFICATION AND OBSERVATIONAL EQUIVALENCE IN
RATIONAL EXPECTATIONS MODELS

We begin with a brief review of some definitions and basic concepts. Our discussion
of identification is based on Rothenberg (1971) and an excellent survey of this
and related concepts can be found in Hsiao (1983). Skepticism of the ability of
economic theory to deliver a credible set of identifying restrictions can be traced
back to Liu (1960) and, in the context of rational expectations models, to Pesaran
(1987) and Sims (1980).

2.1. Observational Equivalence

We take Y to be a vector-valued random variable that takes values in Rl . Y has a
probability distribution function that belongs to a known family of distributions

/F on Rl . A structure S is a set of hypotheses that implies a unique distribution
function F (S) ∈ /F . A set of structures S is called a model and by definition
there is a unique distribution function associated with each S in S. The following
definitions are due to Rothenberg (1971, p. 578).

DEFINITION 1 (Rothenberg). Two structures in S are observationally equiv-
alent if they imply the same probability distribution for the random variables Y.
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DEFINITION 2 (Rothenberg). A structure S in S is said to be identifiable if
there is no other structure in S that is observationally equivalent.

Definitions (1) and (2) apply to very general classes of models. In the following
section we apply them to a class of linear rational expectations models.

2.2. Rational Expectations

We will be concerned with models of the form

AYt + FEt [Yt+1] = B1Yt−1 + B2Et−1[Yt ] + C + �vVt , (1)

Et [VtV
′
s ] =

{
Il, t = s,

0, otherwise.
(2)

A,F,�v , B1, and B2 are l × l matrices of coefficients, C is an l × 1 matrix
of constants, Et is a conditional expectations operator, and {Vt } is a weakly
stationary i.i.d. stochastic process with covariance matrix �vv and mean zero.
Lowercase letters are scalars, and uppercase letters represent vectors or matrices.
We maintain the convention that endogenous variables appear on the left side of
each equation and explanatory variables appear on the right. Our definition of a
structure includes equations (1) and (2) together with the additional assumptions
that the shocks Vt are i.i.d.

Equation (1) is a system of l equations in 2l endogenous variables {Yt ,

Et [Yt+1]}. To close the model one requires additional equations. Under the ra-
tional expectations assumption these are provided by the following definition of
the nonfundamental errors,

Wt = Yt − Et−1[Yt ], (3)

plus the assumption that
lim

T →∞
E[YT ] < ∞. (4)

2.3. The Canonical Form

Combining equations (1) and (3), we arrive at the following representation of a
structural linear rational expectations model, which Sims (2002) refers to as the
canonical form:

Ã0 Xt Ã1 Xt−1 C̃[
A F

I 0

][
Yt

Et [Yt+1]

]
=

[
B1 B2

0 I

][
Yt−1

Et−1[Yt ]

]
+

[
C

0

]

�̃v �̃w

+
[

�v

0

]
Vt +

[
0

I

]
Wt. (5)
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We can write equation (5) more compactly as follows:

Ã0Xt = Ã1Xt−1 + C̃ + �̃vVt + �̃wWt . (6)

Equation (6) is similar to the class of structural models considered by the Cowles
Commission.3 It differs by adding a set of nonfundamental error terms, Wt , and
requiring that the expected value of Yt remain bounded. The error terms, Wt , are
different from the shocks that drive a Cowles Commission model, since some or
all of them may be endogenously determined as part of the solution of the model.

2.4. The Reduced Form

The reduced form of an econometric model is a set of equations that explains each
endogenous variable as a function of exogenous and predetermined variables. The
reduced form of equation (1) is given by the equation

Xt = �∗Xt−1 + C∗ + et , (7)

where the reduced form residuals et are functions of the fundamental and nonfun-
damental shocks,

et = �∗
v Vt + �∗

wWt . (8)

In the case of a unique equilibrium, �∗
w is identically zero and, in this case, only

the fundamental shocks influence the behavior of the system.

2.5. The Dynamics of the Reduced Form

The reduced form governs the behavior of the state variables Yt and their expec-
tations Et [Yt+1]. In computing the reduced form, there are three possible cases
to consider: (1) there is a unique equilibrium, (2) there are multiple stationary
indeterminate equilibria, or (3) no stationary equilibrium exists. In the following
paragraphs we discuss cases (1) and (2).

In almost all cases, the reduced form parameter matrix �∗ has reduced rank and
it is possible to partition Xt into two disjoint subsets Xt = (X1t , X2t ) such that
X1t is described by a VAR(1),

X1t = �∗
11X1t−1 + C∗

1 + e1t , (9)

e1t = �∗
1vVt + �∗

1wW1t , (10)

and X2t is an affine function of X1t ,

X2t = C∗
2 + M∗X1t . (11)

The one exception to this rule is when the equilibrium is indeterminate and the
degree of indeterminacy is equal to l. In this case the matrix �∗ has full rank and
X2t is empty.
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In the familiar case of a unique equilibrium the number of unstable generalized
eigenvalues of {Ã0, Ã1} is equal to l.4 In this case one can choose X1t = Yt and
equation (9) has the form

Yt = �∗
11Yt−1 + C∗

1 + e1t ,
(12)

e1t = �∗
1vVt .

When the equilibrium is unique, the shocks Wt do not enter the reduced form and
in that case X2t is equal to Et [Yt+1] , equation (11) takes the form

Et [Yt+1] = C∗
2 + M∗Yt , (13)

and M∗ and �∗
11 are l × l matrices of full rank.

If the number of unstable generalized eigenvalues is less than l, the solution is
said to be indeterminate. The degree of indeterminacy, r , is equal to l − n, where
l is the dimension of Yt and n is the number of unstable roots; r can vary between
1 and l. Although, in this case, it will still be possible to partition Xt and write the
reduced form as a VAR(1), it may not be possible to choose this partition in a way
that excludes Et [Yt+1] from X1t .

Our definition assumes that every structure is associated with a unique proba-
bility distribution for the observable variables. If the solution to a linear rational
expectations model is nonunique, we take the view that the set of hypotheses
that define the structure is incomplete and the economist must add a probability
model for one or more of the nonfundamental shocks Wt . If there are r degrees of
indeterminacy then one may proceed by partitioning Wt into two disjoint subsets,
W1t ∈ Rr , W2t ∈ Rl−r , and making the assumption that

Et [W1tW
′
1s] =

{
Ir , t = s,

0, otherwise.

A complete model must then add restrictions to the elements of �v and �w that
determine how the fundamental shocks and the r elements of W1t interact with the
structure. This approach amounts to reclassifying r of the nonfundamental shocks
as new fundamentals.5

3. IDENTIFICATION IN THE NEW-KEYNESIAN MODEL

In this section we provide an example that illustrates our main result. We show
that within the class of linear rational expectations models there exist examples
of structures with different microfoundations that are observationally equivalent.
One of these structures is driven by fundamentals alone; the other is driven in part
by nonfundamental “sunspot” shocks. Unlike previous examples of observational
equivalence of the kind discussed by Sargent (1976), the structures we present in
this section have different determinacy properties.6
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Recall that a structure is a set of hypotheses that implies a unique distribution
function F(S)∈ /F . A model is a set of structures. Our exercise is to refine the set
of hypotheses that define the linear rational expectatations model in two different
ways. The first exactly identifies the new-Keynesian model. The second exactly
identifies a microfounded model due to Benhabib and Farmer 2000. Each model is
exactly identified, but the models are nonnested and they each generate the same
unique distribution function F(S)∈ /F .

3.1. Two Alternative Models

Our first model is based on a new-Keynesian theory of aggregate supply. In this
theory money has real effects because some agents are unable to adjust prices
in every period. Our second model is based on the theory of aggregate supply
outlined in Benhabib and Farmer (2000). In this theory money has real effects
either because it is useful in production or because real balances influence labor
supply.

The following equations represent a parameterized three-equation version of
the new-Keynesian model:

yt + a13(it − Et [πt+1]) + f11Et [yt+1] = b11yt−1 + c1 + v1t , (14)

a21yt + πt + f22Et [πt+1] = c2 + b22πt−1 + v2t , (15)

it + f32Et [πt+1] = b33it−1 + c3 + v3t . (16)

In our notation [aij ], [fij ], and [bij ] represent the coefficients of variable j in
equation i on contemporaneous endogenous variables, expected future variables,
and lagged endogenous variables. yt is the output gap, it is the fed funds rate, πt

is inflation, and v1t , v2t , and v3t are fundamental shocks to the equations of the
model. ci is the constant in equation i.

Equation (14) is an “optimizing IS curve,” equation (15) is a new-Keynesian
Phillips curve, and (16) is a central bank reaction function. A model of this kind
has been widely used to model the inflation process in a closed economy [Clarida
et al. (2000), Galı́ and Gertler (1999), Lindé (2001, 2005), and Rotemberg and
Woodford (1998)] and a modified version of the model has been used to study
inflation dynamics in open economies [Clarida et al. (2002)].

To parameterize the “true model” we chose parameters similar to those that
have been estimated by Lubik and Schorfheide (2004), Ireland (2004), and Beyer
et al. (2005). Beyer et al. provide a detailed discussion of the properties of this
model under alternative estimation schemes and Beyer and Farmer (2004b) derive
the implications of the restricted estimates for impulse responses to alternative
shocks. Table 1 contains our specification of the new-Keynesian data-generating
process (DGP).

Our alternative model, based on Benhabib and Farmer (2000), is represented
in equations (17)–(19). Equation (17) is identical to the optimizing IS curve in
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TABLE 1. Parameters of the NK data generation process

Euler equation normalized for yt

Var. it − Et [πt+1] Et [yt+1] yt−1 Constant
Name a13 f11 b11 c1

0.05 −0.5 0.50 0.0015

Phillips curve normalized for πt

Var. yt Et [πt+1] πt−1 Constant
Name a21 f22 b22 c2

−0.5 −0.8 0.25 −0.0010

Policy rule normalized for it
Var. yt Et [πt+1] it−1 Constant
Name a31 f32 b33 c3

−0.5 −1.1 0.8 −0.012

the new-Keynesian model; equations (18) and (19) are different from their new-
Keynesian counterparts

yt + a13 (it − Et [πt+1]) + f11Et [yt+1] = b11yt−1 + c1 + v̄1t , (17)

yt + ā23it = b̄21yt−1 + b̄23it−1 + c̄2 + v̄2t , (18)

ā31yt + ā32πt + it = b̄33it−1 + c̄3 + v̄3t . (19)

Equation (18) is the Benhabib–Farmer theory of aggregate supply by which a
higher value of the nominal interest rate causes firms and households to economize
on real balances. Because real balances are productive inputs to the real economy,
a reduction in real balances causes a loss of output. Benhabib and Farmer pro-
vide a theory that explains how this effect can be large even when the share of
resources attributed to money as a productive asset is small. We have allowed for
a propagation mechanism in this equation by including the lagged output gap and
lagged nominal interest rate as additional variables.

Equation (19) is the policy rule. This differs from our new-Keynesian rep-
resentation of policy in one respect; we have assumed that the Fed responds
to current inflation instead of to expected future inflation. This variation is im-
portant because we are searching for a version of the Benhabib–Farmer model
that is observationally equivalent to the new-Keynesian model. The Benhabib–
Farmer aggregate supply curve does not depend on inflation and, because inflation
appears contemporaneously in the new-Keynesian model, the Benhabib–Farmer
model must introduce this variable elsewhere in the system if the two structural
models are to have the same reduced form.

To find parameterizations of an alternative model that has the same reduced
form, we used the algorithm described in Section 4. Table 2 reports the values
of the structural parameters of the alternative model. The most important feature
of the differences between these models is that the Benhabib–Farmer model is
indeterminate and may be driven, in part, by sunspot shocks.
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TABLE 2. Equivalent parameters of the Benhabib–Farmer
model

Euler equation, normalized for yt

Var. it − Et [πt+1] Et [yt+1] yt−1 Constant
Name a13 f11 b11 c1

0.05 −0.5 0.50 0.0015

Supply curve normalized for yt

Var. it yt−1 it−1 Constant
Name ā23 b̄21 b̄23 c̄2

0.09 0.74 −0.04 0.0064

Policy rule normalized for it
Var. yt πt it−1 Constant
Name ā31 ā32 b̄33 c̄3

−1.02 −0.26 0.63 0.0132

The true new-Keynesian model has the reduced form

Xt = �∗Xt−1 + C∗ + �∗
v Vt ,

where Xt = (Yt , Et−1[Yt ]), whereas the equivalent Benhabib–Farmer model has
a reduced form,

Xt = �∗Xt−1 + C∗ + �̄∗
v V̄t + �̄∗

w1W̄1t .

We checked that the reduced form parameters {�∗(θ), C∗(θ)} are indeed equal
to those of the equivalent model, {�∗(θ̄), C∗(θ̄)}, and, using the algorithm from
Section 4, we computed a variance–covariance matrix �̄1 such that

�∗
v Il�

∗′
v = [�̄∗

v �̄∗
w1]�̄1[�̄∗

v �̄∗
w1]′.

The shocks Vt and (V̄t , W̄1t ) that drive the two models are observationally equiv-
alent.

3.2. Comparative Dynamics of the Two Models

Table 3 presents a comparison of the generalized eigenvalues of the true model and
the Benhabib–Farmer equivalent model arranged in descending order of absolute
value. Stable roots are in boldface. The true model has three unstable roots,

TABLE 3. A comparison of the roots of the two models

1st 2nd 3rd 4th 5th 6th

True model ∞ 1.39 1.39 0.33 0.62 0.62
Equivalent model ∞ ∞ 0 0.33 0.62 0.62
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leading to a unique determinate equilibrium. The equivalent model has the same
three stable roots as the true model, but one of the unstable roots is replaced by a
generalized eigenvalue of zero.

The occurrence of an extra zero eigenvalue in the equivalent model implies that
there is one degree of indeterminacy in the way the system responds to fundamental
shocks. In any given period, contemporaneous fluctuations in output, the interest
rate, and inflation might in part be due to self-fulfilling beliefs.

3.3. Policy Implications of Observational Equivalence

A number of authors have taken up the issue of optimal policy in the new-
Keynesian model. Woodford (2003) has argued that the central bank should strive
to implement a policy that leads to a unique determinate rational expectations
equilibrium because, if policy admits the possibility of indeterminacy, nonfun-
damental shocks may contribute to the variance of inflation and unemployment.
This consideration suggests that a policy maker that dislikes variance should pick
a policy rule that leads to a determinate equilibrium.

In a simple version of the new-Keynesian model equilibrium is determinate if
the central bank responds to expected inflation by increasing the real interest rate
and it is indeterminate if it responds by lowering it. In the former case, the central
bank increases the nominal interest rate by more than one-for-one if it expects
additional future inflation; a policy with this property is said to be active. In the
latter case the central bank increases the interest rate by less than one-for-one if it
expects additional inflation; in this case the policy is said to be passive.

In contrast, in a simple version of the Benhabib–Farmer model, equilibrium is
determinate when the Fed follows a passive monetary policy. Our work suggests
that an econometrician, by observing data from a period in which policy followed a
stable rule, cannot tell whether the policy followed by the Fed led to a determinate
or an indeterminate equilibrium.

4. AN ALGORITHM TO FIND CLASSES OF EQUIVALENT MODELS
USING LINEAR RESTRICTIONS

In this section we provide an algorithm (implemented in Matlab as FindEquiv) to
construct equivalence classes of structural models that have the same reduced form.
For computational reasons we begin with a determinate model. This assumption
is unrestrictive because our purpose is to establish, by means of an example, that
there may exist determinate and indeterminate models that are observationally
equivalent.

4.1. Structural and Reduced Form Parameters Defined

Consider a structural model given by equation (5) and define the vector of structural
parameters

θ = vec [(A, F,B1, B2, C,�v)
′].
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We refer to θ as the true parameters and to equation (5) as the true model. The
assumption that the covariance matrix of Vt is the identity matrix is unrestrictive
because we allow for correlated shocks to the structural equations through the
impact matrix �v .

The reduced form of equation (5) is represented by equations (7) and (8) and is
parameterized by the vector

φ(θ) = vec [(�∗, C∗, �∗
v )′].

By assumption, we begin with a determinate model and so the parameters �∗
w that

appear in (8) are identically zero. Our notation reflects the functional dependence
of φ on θ . We refer to φ as the reduced form parameters.

Our next step is to forget that we know the true model and to trace the steps that
would be followed by an econometrician who had access to an infinite sequence
of data generated by the model and who used this data to recover the reduced form
parameters φ. The econometrician combines his estimated reduced form with an
economic theory and recovers some possibly different model that we call θ̄ .

Following Fisher (1966), our econometrician establishes a set of linear equations
linking φ to the structural parameters in his model, θ̄ . He adds a set of linear
restrictions of the form Rθ̄ = r and solves the resulting linear equation system
for θ̄ as a function of φ, r , and R.

Let the structural model of the econometrician be denoted as

[
Ā F̄

I 0

] [
Yt

Et [Yt+1]

]
=

[
B̄1 B̄2

0 I

] [
Yt−1

Et−1[Yt ]

]
+

[
C̄

0

]
+

[
�̄v

0

]
V̄t +

[
0

I

]
W̄t .

(20)

We refer to θ̄ as the equivalent parameters and to equation (20) as the equivalent
model. Premultiplying (7) by [Ā F̄ ] and equating coefficients leads to the matrix
equation

[
Ā
l×l

F̄
l×l

] [
�∗

2l×2l

C∗
2l×1

�∗
v

2l×l

]
=

[
B̄1
l×l

B̄2
l×l

C̄
l×l

�̄v
l×l

]
. (21)

l×2l 2l×(3l+1) l×(3l+1)

After equation (21) is rearranged and the properties of the Kronecker product are
exploited, this system can be written as the following set of l(3l + 1) equations in
the l(5l + 1) parameter vector θ̄ :

H(φ)
l(3l+1)×l(5l+1)

θ̄
l(5l+1)×1

= h
l(3l+1)×1

. (22)

The details of this construction are given in the Appendix.
To recover a unique vector θ̄ that satisfies these equations, we require an addi-

tional 2l2 independent linear restrictions, which we assume are given by economic
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theory in the form of exclusion restrictions or as linear constraints. We parameterize
these restrictions with a matrix R and a vector r such that

R
l(2l)×l(5l+1)

θ̄
l(5l+1)×1

= r
l(2l)×1

. (23)

Stacking equations (22) and (23) leads to the system

J
l(5l+1)×l(5l+1)

θ̄
l(5l+1)

= r
l(5l+1)×1

, (24)

where

J =
⎡
⎣ H

(3l+1)×(5l+1)

R
l(2l)×l(5l+1)

⎤
⎦ and j =

⎡
⎣ h

l(3l+1)×1

r
l(2l)×1

⎤
⎦ .

For the structural model to be identified, the matrix J must have full rank and
the rows of equation (23) must identify different structural equations. This requires
that the rank and the order conditions [Fisher (1966)] must be checked for each
equation of the system. When identification is satisfied, the econometrician can
recover the equivalent model θ̄ from the estimates of the reduced form (contained
in φ) and the restrictions contained in (23). By construction, θ̄ is observationally
equivalent to the true model θ and both models lead to the same reduced form;
that is,

φ(θ) = φ(θ̄).

The restriction matrix R that was used to compute the example in first part of the
paper is available in the Matlab file NKexample.m (see Note 6).

4.2. Equivalent Representations of the Solution

To generate an equivalent model, the user need only follow the steps contained
in Section 4.1. However, when this procedure is followed and the reduced form
is computed using SysSolve or an equivalent program such as Sim’s algorithm
GENSYS, the resulting reduced form will typically look very different from that
of the original model. However, these reduced forms are in fact equivalent; they
just use different sets of state variables that span the same state space. This
section explains how the user can verify the equivalence of the two reduced
forms.

Let equation (25) represent the reduced form of a model that has a unique
equilibrium,

Yt = �∗
11Xt−1 + C∗

1 + �∗
v Vt ,

(25)
Et [Yt+1] = C∗

2 + M∗Yt .
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We assume that the econometrician identifies an equivalent model that has an
indeterminate equilibrium and we write the reduced form of this model as follows:

X1t = �̄∗
11X1t−1 + C̄∗

1 + �̄∗
v V̄t + �̄∗

wW̄t ,
(26)

X2t = C̄∗
2 + M̄∗X1t .

The algorithm we use to generate an equivalent model does not always choose a
representation of the reduced form for which X1t = Yt . To establish observational
equivalence we use a second algorithm, implemented in Matlab as convert, to
rewrite the equivalent model using Yt as the state variables. This leads to the
representation

Yt = �̄∗
11X1t−1 + C̄∗

1 + �̄∗
v V̄t + �̄∗

wW̄t ,
(27)

Et [Yt+1] = C̄∗
2 + M̄∗X1t .

To check observational equivalence of the true model and the equivalent model
one must make sure that in any given example,

�∗
11 = �̄∗

11, C∗
1 = C̄∗

1 ,

C∗
2 = C̄∗

2 , M∗ = M̄∗.

The solution algorithm FindEquiv generates a matrix �̄ such that

�∗
v Il�

∗′
v = [

�̄∗
v �̄∗

w

]
�̄

[
�̄∗

v �̄∗
w

]′
.

This equality implies that the reduced forms of the two systems are observationally
equivalent when the DGP is driven by shocks Vt with covariance matrix Il and the
equivalent system is driven by shocks

[
V̄t , W̄t

]
with covariance matrix �̄.

5. CONCLUSIONS

To summarize, this paper is about identification in linear rational expectations
models. We provide an algorithm, implemented in Matlab, that generates equiva-
lence classes of exactly identified models. This algorithm operates in three steps.
First, the user specifies a “true” structural model, or data generating process.
Second, the algorithm is used to calculate the parameters of a reduced form; these
parameters are functions of the parameters of the structural model. Third, the user
specifies an alternative economic theory in the form of a set of linear restrictions.
The linear restrictions, in combination with the reduced form parameters, allow the
user to generate an equivalent structural model that is observationally equivalent
to the true DGP.

Observational equivalence is not a new concept in the rational expectations
literature. However, we provide an example based on the new-Keynesian theory
of the monetary transmission mechanism in which the true model and the equiv-
alent model have different determinacy properties. In our example we establish
an equivalence between a class of models proposed by Benhabib and Farmer
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(2000) and the standard new-Keynesian model. This, we believe, is a new and
disturbing result, because equilibria in the Benhabib–Farmer model are typically
indeterminate for a class of policy rules that generate determinate outcomes in the
new-Keynesian model.

NOTES

1. Examples include Clarida et al. (2000), Galı́ and Gertler (1999), and Fuhrer and Rudebusch
(2004).

2. Examples of recent papers that make this, or related points, are those of Canova and Sala (2005),
Lindé (2001, 2005), Lubik and Schorfheide (2004), Mavroedis (2002), and Nason and Smith (2003).

3. The monograph Statistical Inference in Dynamic Economic Models (1950), edited by Koopmans
and Marschak, is an excellent collection that introduces many of the econometric ideas associated with
the Cowles Commission.

4. This often-cited condition is usually sufficient to guarantee uniqueness. However, the necessary
and sufficient conditions for existence and uniqueness are more complicated in general models and
involve a spanning condition applied to a rotation of the model based on a QZ decomposition of the
matrices A and B. For the exact conditions for existence and uniqueness the reader is referred to Sims
(2002, pp. 11 and 12). The QZ decomposition for the square matrices A and B is a pair of upper
triangular matrices S and T and a pair of orthonormal matrices Q and Z such that QT Z = A, QSZ =
B and QQ′ = ZZ′ = I . The ratios [Sii ]/[Tii ] of the diagonal elements of S and T are referred to as
generalized eigenvalues or roots.

5. Lubik and Schorfheide (2003) provide an extension of Sims’s code Gensys that handles the
case of indeterminacy.

6. The code used to generate the example in this section is available at http://farmer.sscnet.ucla.
edu/NewWeb/Computer%20Code/WhatWeCodeMatlab/.
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APPENDIX

This section defines the matrices H,h, J , and j from equations (22) and (24),
Section 4:

H⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[Il]
l×l

⊗

⎡
⎢⎢⎢⎢⎢⎣

�∗
2l×2l

′

C∗
1×2l

′

�∗
v

l×2l

′

((3l+1)×2l)

... −I(3l+1)

(3l+1)×(3l+1)

⎤
⎥⎥⎥⎥⎥⎦

(3l+1)×(5l+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

l(3l+1)×l(5l+1)

θ̄⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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l×l
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l×l

′

B1
l×l

′

B2
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C
1×l
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(A.1)
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⎛
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