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Abstract

I show how to construct a stochastic long-lived overlapping generations model,
based on a non-stochastic model developed by Olivier Blanchard [2] and
Philippe Weil [14], that nests the RBC model as a special case. My innova-
tion over previous work is to add an aggregate stochastic shock. I provide
three different calibrations of the model. One mimics the RBC model and
the other two are heterogeneous agent economies (HA and HATAX) with
and without corporate income taxes. I show that the HA and HATAX mod-
els can explain the low safe rate of interest that has been observed for long
periods in U.S. data. The HATAX model can also explain the fact that the
investment to GDP ratio in US data is lower than the proÞt share. All three
models are almost identical in their predictions for the comovements and
volatilities of consumption, investment, employment and GDP at business
cycle frequencies.



1 Introduction

This paper is part of a research agenda in which I a develop a stochastic
version of an overlapping generations model that can be calibrated and used
in applied work. The focus of the current paper is on dynamic efficiency in
a model with capital. In a related paper [7] I study asset pricing and the
equity premium in an endowment economy. In both papers I adapt a model
Þrst discussed by Olivier Blanchard [2] and later developed by Philippe Weil
[14] in which one thinks of the economy as populated by a growing number of
inÞnite horizon agents. The Blanchard-Weil model is non-stochastic at the
aggregate level. The innovation of my work is to add an aggregate stochastic
shock.
In the current paper I construct a model that nests the RBC model as a

special case; but in which the safe rate of return is below the growth rate.
In spite of this fact, the economy passes the test of Abel-Mankiw-Zeckhauser
and Summers [1], who point out that dynamic inefficiency in a competitive
economy implies that the investment rate should exceed the proÞt share.
Since the proÞt share has been roughly 30% and the investment rate only
18%, Abel-et-al conclude that the U.S. economy cannot be dynamically in-
efficient. This argument is correct in an economy with no distortions but
in the U.S. there is a tax on corporate proÞts that distorts the capital al-
location decision. I show that when one accounts for a corporate proÞts
tax of 46%, the historical average in post-war data, my calibrated economy
is consistent with the historical observation of a low safe rate of return and
with an investment rate that is lower than the proÞt share.

2 Historical Data on the Safe Rate of Return

In the period from 1934 to 1979 there were only six years when the interest
rate on three month treasury bills exceeded the growth rate of nominal GDP.
These were 1938, 1946, 1949, 1954, 1957 and 1970. The average treasury bill
rate for this period was 2.9% with a standard deviation of 2.5 and the average
rate of nominal income growth was equal to 8.23% with a standard deviation
of 5.5. The data for this period is illustrated in Figure 1. It is difficult to
view this Figure without forming the impression that the U.S. government
did not face a binding present value budget constraint before 1979. Since
the growth rate of tax revenues consistently exceeded the interest rate on
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government debt, the government could have lowered taxes without planning
to raise them again in the future. This conceptual experiment is in contrast
to the Ricardian Equivalence proposition which asserts that any reduction
in current taxes must be met by a planned increase in future taxes of equal
net present value.1
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Figure 1: The Interest Rate and the Growth Rate in U.S. Data.

It is difficult to explain the existence of a low safe rate of interest with
the real business cycle model since the wealth of the representative agent is
unbounded in such economies when the riskless interest rate is lower than
the growth rate.2 Most recent work on business cycles recognizes the low

1The argument in this paragraph was Þrst made by Michael Darby [5]. Miller and
Sargent [9] responded to Darby�s argument by pointing out that one should not expect the
interest rate to be independent of policy. It is likely that the attempt to run a large deÞcit
would lead to an increase in the interest rate and change the nature of the equilibrium.
The model developed in this paper can be used to develop the Miller-Sargent argument
formally in a computable dynamic general equilibrium model.

2This result relies on the assumption that there exists a lower bound on the value of the
future endowment stream of at least one agent. By relaxing this assumption it is possible
for an RBC economy to display a low rate of return if the degree of risk aversion of the
representative agent is very high. This is the route followed by Abel et al [1], who give
an example of a representative agent economy in which endowment growth is lognormally
distributed (and hence the endowment of the representative agent is unbounded below).
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safe rate of return as a puzzle to be explained. Typically, papers in this
literature choose the rate of time preference of the representative agent to
equal approximately 3%. This choice implies that the mean return to capital
in the model will be equal to 7% which was the historical mean return to
equity in the U.S. over the last century. Models calibrated in this way
have difficulty explaining why the riskless rate over the same period was only
2%. In this paper I take an alternative approach. I calibrate a business
cycle model by choosing the rate of time preference of a typical agent to
be 1%. I assume that all population growth consists of new agents entering
the economy and I show that my model economy has a safe interest rate of
approximately 2%. The government, in my model, does not face a binding
present value budget constraint, at least for low rates of lump-sum taxation
since future agents can be made to pay for current expenditures.

3 The Model

3.1 Households

I will describe a stochastic version of an economy that was Þrst studied
by Philippe Weil [14]. It is populated by inÞnitely lived families that have
logarithmic preferences over consumption and discount factor β ∈ [0, 1).
These agents maximize the discounted present value of a function,

U i = log
¡
Cit
¢− λlit, (1)

where lit is hours supplied to the market by household i. I have chosen a
speciÞcation for which preferences are linear over leisure to give the model
the best possible chance of capturing the observed volatility in hours. This
speciÞcation is widely used in the real business cycle literature following
the arguments of Gary Hansen [8] and Richard Rogerson [11] that indivisi-
ble leisure can be modeled �as if� agents had linear preferences over hours
worked.
The families in my economy trade a complete set of Arrow securities.

Each period, the agents of household i supply labor hours lit to the market,
they purchase consumption commodities Cit and they accumulate securities
Ait+1 (S

0) for each value of S0. The budget constraint of a representative

3



family is given byX
S0
Qt+1 (S

0)Ait+1 (S
0) = Ait (S) + ωtl

i
t + T

i
t − Cit .

Ait+1
¡
S
0¢
is the quantity of security S0 purchased for price Qt+1 (S0) at date

t. The term Ait (S) on the right side of this constraint is the security that
pays off at date t if state S is realized. ωt is the wage, lit is hours worked, C

i
t

is the household�s purchase of consumption commodities and T it represents
lump-sum transfers. I deÞne the human wealth of the household as follows,3

Hi
t = ωtl

i
t + T

i
t +

X
S0
Qt+1H

i
t+1.

Using this deÞnition one can represent the solution to the household�s prob-
lem as follows:

Cit = (1− β) ¡Ait +Hi
t

¢
, (2)

λCit = ωt. (3)

Equation (2) says that the household consumes a Þxed fraction of wealth
each period. Equation (3) equates the marginal disutility of working divided
by the marginal utility of consumption to the real wage. The assumption
that utility is linear in leisure implies that consumption is independent of
wealth and hence all generations have the same consumption proÞle.4 This
assumption is important in enabling me to obtain a simple expression for the
price of an Arrow security and I will return to it in Section (4).

3.2 Demographics

The population in my economy grows at rate n so that if Nt is the number
of agents alive at date t then

Nt+1 = (1 + n)Nt.
3This is a non-standard deÞnition of human wealth which is typically used to refer

to the value of the time-endowment of a representative agent. In my economy, human
wealth is an endogenous variable that is different, in equilibrium, for agents of different
generations.

4It also possible to solve explicitly for a model in which utility is logarithmic in leisure,
although this model delivers a more complicated expression for the price of an Arrow
security. I am indebted to Leo Kaas for pointing out to me that linear leisure leads to a
particularly simple expression for security prices.
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Following Weil [14] I want to think of the agents in my model as �dynas-
ties�. Each period, households have some number of children that inherit
the family fortune. But there are also �unloved children� that are cut off
from inheritance and who must form their own new dynasties. The parame-
ter n represents the growth rate of these new agents.
DeÞne the terms

At =
X
i

Ait, Ht =
X
i

Hi
t , Lt =

X
i

lit,

lt =
Lt
Nt
, Ct =

X
Cit , Tt =

X
T it ,

to be aggregate versions of the individual variables and consider the accumu-
lation of aggregate physical assets, At. Summing the budget equation over
all households givesX

S0
Qt+1 (S

0)At+1 (S0) = At (S) + ωtLt + Tt − Ct, (4)

and since capital is the only store of wealth,

At (S) = (1 + rt)Kt (S) . (5)

Equation (5) deÞnes the total value of Arrow securities in state S at date t
to equal the value of capital plus the net after-tax return-to-capital, rtKt.

3.3 Technology

The resource constraint is standard,

Kt+1 = Kt (1− δ) + Yt − Ct.
Kt+1 is the capital stock in period t+ 1, δ is the depreciation rate and Yt is
aggregate output. I assume that output is produced with a Cobb-Douglas
production function,

Yt = StK
α
t (MtNtlt)

1−α ,

where St is a stationary stochastic productivity shock, α is a parameter that
measures the elasticity of output with respect to capital and ltNt is aggregate
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labor input. Deterministic labor augmenting technical progress, represented
by Mt, grows at rate m;

Mt = (1 +m)Mt−1,

and productivity is governed by the process

St+1 = S
ρ
t exp (et+1) ,

where et+1 is an error with zero mean that represents the innovation to the
productivity shock. I assume that the support of et+1 is Þnite and that it
corresponds to the set of Arrow securities in the sense that for each element
of the support of et+1 there is an associated security.
It will also be useful to deÞne the aggregate growth factor g such that

(1 + g) ≡ (1 + n) (1 +m) .

There are two terms on the right side of this identity because growth arises
from two sources; growth of new dynasties, represented by (1 + n) and growth
of labor productivity, represented by (1 +m) .
I assume competitive factor markets so that the real wage ωt and the

rental rate rrt are given by the expressions

ωt =
(1− α)Yt

Lt
, rrt =

αYt
Kt
,

where I have exploited the Cobb-Douglas functional form to write the mar-
ginal products of labor and capital in this way. I assume that corporate
proÞts are subject to tax at the rate τ c so that the net after tax return to
capital, rt, is given by the equation:

rt = (rrt − δ) (1− τ c) .

Ahousehold that holds a unit of capital loses δ units to depreciation and earns
rental rate rrt. It pays taxes on rents minus depreciation at the corporate
tax rate, τ c.
Throughout this paper I will analyze economies for which the government

budget is balanced,

(αYt − δKt) τ
c = Tt.
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For policies in this class all tax revenues from corporate taxes are redistrib-
uted to households in the form of lump sum transfers.
The parameter τ c is important because Abel et al [1] have argued that

the U.S. economy is dynamically efficient even though the safe rate of return
has been lower than the growth rate of GDP for long periods of U.S. history.
Their argument hinges on the fact that, in a dynamically efficient economy,
the share of national income paid to capital will exceed the ratio of investment
to GDP. In the U.S., although the safe rate of interest has been lower than
the growth rate, the share of income paid to capital has historically exceeded
the investment ratio. I will show in Section 5 that a long-lived overlapping
generations economy can capture both of these facts when the capital income
tax is set at a value consistent with much of post-war policy. Since the
U.S. tax code allows for the wage bill to be deducted as an expense against
revenues, the corporate income tax acts as a distortionary tax on Þxed capital
owned by corporations and it lowers the equilibrium capital stock.
The Þnal equation of the model is the pricing equation for rental capital.

Absence of arbitrage opportunities and the existence of a complete set of
contingent securities markets implies that the rental rate is related to the
price of an Arrow security by the following equation,X

S0
Qt+1 (S

0) (1 + rt) = 1. (6)

4 A Stationary Representation of the Model

4.1 DeÞning New Variables

My next task is to Þnd a stationary representation of the equations of the
model. For this purpose I will normalize each of the variables, deßating it
by the two variables Mt and Nt that grow exogenously. DeÞne each of the
following transformed variables:

kt =
Kt

MtNt
, ct =

Ct
MtNt

, yt =
Yt
MtNt

,

ht =
Ht
MtNt

, at =
At
MtNt

.
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Using these deÞnitions, the equations of the model can be expressed in the
following way, beginning with two static equations.

yt = Stk
α
t l
1−α
t , (7)

λct =
(1− α) yt

lt
. (8)

Equation (7) is the production function in per-capita terms and Equation
(8) is the labor market clearing equation. The model is completed by the
following two dynamic equations.

(1 + g) kt+1 = kt (1− δ) + yt − ct, (9)

1

ct
=

β

(1 +m)
Et

·
1

ct+1
RRt+1

¸
(10)

where

RRt+1 ≡
µ
1 +

µ
α
Yt+1
Kt+1

− δ
¶
(1− τ c)

¶
.

Equation (9), is the resource constraint and (10) is an aggregate consumption
Euler equation. Notice that the right side of this expression is divided by
(1 +m) and not by (1 + g) as it would be in a representative agent economy.
The following paragraph explains why.
Each dynasty at date t will choose consumption to obey the equation

1

Cit
=

βπ (S0)
Qt+1 (S0)Cit+1 (S0)

,

where π (S0) is the probability that state S0 occurs, β is the discount factor
and Qt+1 (S0) is the price for delivery of a unit of the commodity in state S0

at date t + 1. When this expression is summed over all generations alive at
two consecutive dates, and normalized by the growth factorMtNt it leads to
equation (11).

1

Ct
=

βπ (S0) (1 + n)
Qt+1 (S0)Ct+1 (S0)

. (11)
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In this equation Ct is aggregate consumption. It is important to notice that
the term (1+n) appears in the numerator of Equation (11) because the con-
sumption at date t+1 of those who were alive at date t is equal to 1/ (1 + n)
of aggregate consumption at date t + 1. The additional fraction n/ (1 + n)
of aggregate t+1 consumption is accounted for by the new generations born
at date t + 1. After normalizing Equation (11), multiplying both sides by
MtNt, and taking the conditional expectation at date t,one obtains equation
(10).

4.2 Steady State Equations

My next task is to Þnd a balanced growth path for this economy, represented
as a non-stochastic steady state of the transformed equations. I begin by
deÞning k̄, c̄, l̄ and ȳ to be the steady state values of kt, ct, lt and yt in a
version of the model for which St = 1 for all t. This assumption shuts down
all of the stochastic shocks. Now deÞne

cy =
c̄

ȳ
, ky =

k̄

ȳ
,

and write the steady state version of Equations (9) and (10) in terms of these
transformed variables.

(g + δ) ky = 1− cy, (12)

1

cy
=

β

(1 +m)

µ
1

cy

¶µ
1 +

µ
α

ky
− δ
¶
(1− τ c)

¶
. (13)

By substituting Equation (12) into (13) one arrives at a linear equation in
cy. In the following analysis I calibrate the model and use Maple (the com-
putational engine in ScientiÞc Workplace) to solve for the steady state value
of cy. Given this value I compute ky from Equation (12) and l̄ from the the
steady state version of labor market clearing, Equation (8);

l̄ =
(1− α)
λcy

. (14)

One can also recover an expression for ȳ from the production function and
expressions for c̄ and k̄ from the deÞnitions of cy and ky.
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5 Calibration

In this section I add the assumption that uncertainty arises from a highly
autocorrelated productivity shock and I calibrate three versions of the model.
One version is a standard RBC economy in which there is no population
growth. In the other two versions I allow for the entry of new dynasties and
I calibrate the discount parameter and the population growth rate to match
the implied safe rate of return to U.S. data. The equations of the model are
as follows:

(1 + g) kt+1 = kt (1− δ) + yt − ct, (15)
1

ct
=

β

(1 +m)
Et

·
1

ct+1
RRt+1

¸
, (16)

yt = St (kt)
α (lt)

1−α , (17)

λct = (1− a) yt
lt
, (18)

St = Sρt−1 exp (et) , (19)

RRt+1 ≡
µ
1 +

µ
αyt+1
kt+1

− δ
¶
(1− τ c)

¶
. (20)

The evolution of the productivity shock is modeled in Equation (19).
The parameter ρ represents the degree of autocorrelation of this shock and
et is its innovation. It is typical in the literature to argue that St is directly
observable and is equal to the Solow residual. With the exception of the term
(1 +m) that enters Equation (16) this model is identical to a standard real
business cycle economy. In the case when no new generations are allowed
to enter the economy, the parameter m is equal to g and in this case the
heterogeneous agent model and the real business cycle model coincide.
In the period from 1950 to 1979 the average growth rate of real GDP was

3.8%. I have chosen this period because it is the longest span in post-war
history in which the nominal rate of growth was consistently above the trea-
sury bill rate. I started the sample in 1950 to exclude war-time ßuctuations
in debt and deÞcits. I ended it in 1979 because the data following 1980 looks
very different and in the 1980�s the interest rate exceeded the growth rate.
Growth slowed dramatically in the 1980�s and the interest rate rose.5

5Miller and Sargent [9] point out that one would not expect the interest rate to be
independent of policy. It seems likely that the steep rise in the real interest rate in the
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DATA RBC HA HATAX Concept
g = 0.038 0.038 same same GDP growth rate
m = 0.014 0.038 0.014 0.014 Productivity growth rate
β (unmeasured) 0.97 0.99 0.99 Discount factor
α = 0.36 0.36 same same Capital�s share
ρ = 0.93 0.93 same same Autocorrelation of Shock
δ = 0.06 0.06 same same Depreciation rate
σ = .016 0.016 same same Stnd. dev. of Shock
τ c = 0.46 0 0 0.46 Corporate tax rate
r ∈ {0.001, 0.07} 0.07 0.024 0.024 Interest rate
k/y = 4.3 2.8 4.3 3.4 Capital/output ratio
i/y = 0.29 0.27 0.42 0.34 Investment ratio
1− LSH = 0.36 0.36 0.36 0.36 ProÞt ratio

Table1: Calibrating three models

In Table 1 I have calibrated my model using three different sets of as-
sumptions. The Þrst set, listed in column 2 of Table 1, turns the model
into a relatively standard RBC economy by picking the growth rate of new
dynasties to equal zero.6 The second two sets, in columns 3 and 4, represent
heterogeneous agent economies (HA) in which there are new agents appear-
ing each period. In all three calibrations I have chosen the same value for
the growth rate, g. I have also chosen depreciation and the properties of the
Solow residual to take values that are relatively standard in the calibration
literature. There are three parameters that are different across the three
calibrations.
Table 1, column 1 reports the growth rate of real chain weighted GDP

from the US NIPA accounts. This was equal to 3.8% on average from
1950 through 1979. The rate of growth of the Solow residual (computed
as log (Y/K0.36L0.64) was equal to 1.4%.7 For the HA and HATAX models I

early 1980�s was directly connected to monetary and Þscal policy changes that occurred
during the Reagan administration. In the heterogeneous agent model, a reduction in taxes
will raise the equilibrium interest rate. If the reduction is large enough, the model may
switch from one in which the riskless interest rate is lower than the growth rate, to one in
which it exceeds the growth rate.

6Since (1 + g) = (1 +m) (1 + n), the proposition that n = 0 is implied by setting
g = m.

7The capital stock series used for this construction was computed from a series on
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set m = 1.4% and g = 3.8% to match these numbers. For the RBC model
I set both g and m equal to 3.8%. In the RBC model, population growth
and productivity growth have the same effect on the equilibrium values of
all other variables. Hence, this difference in the calibrations across the two
models has no important effects on any other parts of the models.
The numbers for the capital/output ratio, labor�s share and the invest-

ment rate, reported in the table, are taken from Prescott and McGrattan
[10] page 39 Tables C1 and C2 by adding up the shares of corporate and
non-corporate sectors. The capital stock number is high, but it includes gov-
ernment capital, housing and a measure of intangible capital. Since these
different stocks depreciate at different rates, it may be misleading to put
too much weight on the discrepancy between this number and the capital
stocks in the three single sector models in which I have imposed a single 6%
depreciation rate.
In the RBC calibration I set the discount factor to 0.97. In combination

with the assumption that g = 3.8%, this choice of parameters delivers an
equilibrium interest rate of approximately 7%, equal to the rate of time
preference plus the growth rate. In the two heterogeneous agent economies,
HA and HATAX, I have set the agent�s discount rate to 0.99. In combination
with the assumption that m = 1.4% and g = 3.8% this choice of parameters
delivers an equilibrium interest rate of 2.4%. In the data the ex post real
T-bill rate had a mean of 0.15% with a standard deviation of 1.2% and the
real stock return as computed by Shiller [13] had a mean of 7.1% with a
standard deviation of 16%. By choosing a rate of time preference of 0.99
I was able to bring down the rate of return to 2.4%, less than the growth
rate, but not as low as the observed mean of the ex post T-bill rate of 0.15%.
It would have been possible to lower the safe rate of return still further by
raising the discount rate at the cost of generating unrealistically high values
for the investment ratio in the HATAX economy.
Column 3 (the HA economy) represents a heterogeneous agent economy

in which the corporate income tax rate is zero and in this economy the
steady state interest rate is equal to 2.4%. Compare this with the steady
state interest rate in the RBC economy of 7%. As Abel et al [1] point out, a
low real interest rate economy will be associated with an unrealistically high
investment/income ratio (equal to 42% as opposed to 29% in the data) that

private plus government investment using a perpetual inventory method and assuming a
depreciation rate of 6%.
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exceeds the share of income going to capital (equal to 36%).
Column 4 adjusts the model to account for a corporate proÞt tax of 46%,

which is representative of the rates in force in the post-war period.8 Explicitly
allowing for a corporate proÞt tax has no noticeable effect on the after-tax real
interest rate in equilibrium but is has a substantial effect on the equilibrium
capital-output and investment-output ratios. The capital-output ratio falls
to 3.4, and the investment-output ratio to 34%. The HATAX model can
account for the low safe rate of interest and it gives a Þgure for the investment
to GDP ratio that is not too far from the historically observed ratio of private
plus government investment to GDP. The Þgure in U.S data was equal to 29%
and in the HATAX model it is 34% when the corporate income tax is set at
46%.

6 A Linearized Version of the Model

In this section I show how to linearize the model and in Section 7 I use
the linearized model to simulate artiÞcial time series from three different
calibrations.
First deÞne the vectors Xt and Yt as follows;

Yt =

 �ct
�kt
�st

 , Xt =

·
�lt
�yt

¸
.

where hats indicate proportional deviations from the non-stochastic steady
state. To derive a linearized model I Þrst separate out those equations that
contain values of Xt and Yt at a point in time (I call these static equations)
from equations that contain values at different points in time; (I call these
dynamic equations). The static equations are Equations (17) and (18) and
the dynamic equations are (15), (16) and (19). Now linearize the static
equations as follows;

B1Xt = B2Yt, (21)
8John Seater [12] estimates that the average marginal coporate tax rate was 1% from

1909-1915. At the end of WWI it jumped to 10% and increased sporadically during the
interwar years to reach a new high of 19% in 1938-39. At the end of WWII it jumped to
70% and in the period from 1949-1975 it never fell below 38% and was equal to 48% for
much of the 1970�s.
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where the matrices B1 and B2 are derived in the appendix. A key insight in
understanding the properties of the dynamics that I report below is that the
elements of the matrices B1 and B2 are the same for all three parameteriza-
tions of the model. This implies that the comovements of Xt and Yt are the
same for the RBC model and for the HA and HATAX models.
Now write the dynamic equations as follows,

A1Yt+1 +A2Xt+1 +A3Yt +A4Xt +A5Vt+1 = 0, (22)

where

Vt+1 =

·
�et+1
�wt+1

¸
,

and

�wt+1 = Et
h
a4�ct+1 + a5�kt+1 + a6�yt+1

i
−
h
a4�ct+1 + a5�kt+1 + a6�yt+1

i
,

is the Euler equation error. The terms A1, A2, A3, A4 and A5 are parame-
ter matrices that contain functions of the deep parameters of the model,
and the parameters a4, a5, and a6 are linearization coefficients deÞned in the
appendix.
Substituting Equation (21) into Equation (22) gives the expression

Yt = J1Yt+1 + J2Vt+1, (23)

where the matrices J1 and J2 are functions of A1, A2, A3, A4, A5, B1 and B2.
Equation (23) expresses the current value of Yt as a function of future values
and future expected values of itself and of future realizations of et+1. The
behavior of Yt (and hence of Xt) will depend in part on the values of the
eigenvalues of J1.
Since the vector Yt contains one free variable (a variable not pinned down

by an initial condition) a necessary and sufficient condition for the rational
expectations equilibrium to be unique is that one of the eigenvalues of J1 is
inside the unit circle.9 When this condition holds, as it does in all three of
my calibrated examples, one can Þnd a linear function

�ct = q1�kt + q2�st, (24)
9The solution technique for this class of models is, by now, well known and there are

many good references that explain the procedure in depth. One of the Þrst articles on the
topic is by Blanchard and Kahn [3]. There is a detailed exposition in Chapters 2 and 3 of
Farmer [6].
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that describes the behavior of �ct as a function of the state variables �kt and
�st in a rational expectations equilibrium.10

In the simulations reported below I calculated the values of q1 and q2 for
each of the three models, RBC, HA and HATAX. I then deÞned vectors

X∗
t =

 �ct�lt
�yt

 , Y ∗t =
·
�kt
�st

¸

and used Equations (23) and (24) to write the dynamics of the system in
state space form

Y ∗t+1 = J3Y
∗
t + J4et+1,

X∗
t = MY ∗t .

The matrices J3, J4 andM are functions of the linearization coefficients of the
model and of the derived parameters q1 and q2. Details of these computations
are reported in the appendix.
In Table 1 I showed that the three models differ in their Þrst moments.

The following section illustrates the behavior of their second moments by
graphing artiÞcial data from a single simulation of each of the models.

7 Simulating Data

In Figures 2, 3 and 4 I compare simulated data for the three artiÞcial
economies with business cycles from US data. In each Þgure, the top left
panel represents US data, and the other three panels report simulations of
each of the three models for a single drawing of the errors {et}30t=1 . Each
model uses the same random drawing and each panel of these three Þgures
compares the deviations of GDP from trend with one additional series: Fig-
ure 2 plots consumption and GDP, Figure 3 plots employment and GDP and
Figure 4 plots investment and GDP. In every case the data and the model
simulations have been detrended with the Hodrick-Prescott Þlter.11

10Let J1 = QΛQ−1 where Λ is a diagonal matrix of eigenvalues and Q is a matrix of
eigenvectors. The linear function described in the text is found by setting the row of
Q−1Yt associated with the eigenvalue of J1 that lies inside the unit circle, equal to zero.
11ArtiÞcal data was generated in Gauss using code available at

http//:www.farmer.sscnet.ucla.edu. Actual and artiÞcal data was detrended (using
Eviews) with the Hodrick Prescott Þlter using a smoothing parameter of 100.

15



-5

-4

-3

-2

-1

0

1

2

3

4

1950 1955 1960 1965 1970 1975

GDP (US Data) Consumption (US Data)

P
er

ce
nt

ag
e 

de
vi

at
io

n 
fro

m
 tr

en
d

-5

-4

-3

-2

-1

0

1

2

3

4

1950 1955 1960 1965 1970 1975

GDP (RBC Model) Consumption (RBC Model)

P
er

ce
nt

ag
e 

de
vi

at
io

n 
fro

m
 tr

en
d

-5

-4

-3

-2

-1

0

1

2

3

4

1950 1955 1960 1965 1970 1975

GDP (HA Model) Consumption (HA Model)

P
er

ce
nt

ag
e 

de
vi

at
io

n 
fro

m
 tr

en
d

-5

-4

-3

-2

-1

0

1

2

3

4

1950 1955 1960 1965 1970 1975

GDP (HATAX Model) Consumption (HATAX Model)

P
er

ce
nt

ag
e 

de
vi

at
io

n 
fro

m
 tr

en
d

Figure 2: Consumption and GDP
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Figure 3: Employment and GDP
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Figure 4: Investment and GDP

Notice the similarity of the three artiÞcial economies with each other.
Although the HA and HA tax models predict very different values for the
mean rate of return from the predictions of the RBC economy, all three mod-
els generate remarkably similar ßuctuations. I have already drawn attention
to the fact that for all three models the matrixM that links Xt and Yt is the
same. This implies that, if the dynamic behavior of the sequences {Yt} is
similar across models then so is the behavior of {Xt}. The similarity across
models of the artiÞcial data illustrated in Figures 2, 3 and 4 shows that the
variables {Yt} are also similar.
To understand why the dynamics of the models are so close, consider the

matrix J3 that governs the dynamics of capital accumulation. This matrix
has two roots λ1 and λ2 that are compared across models in Table 2.

Concept RBC HA HATAX
λ1 0.797 0.884 0.843
λ2 0.930 0.930 0.930
Table 2: Eigenvalues of J3

The second root of J3 is equal to ρ, the parameter that governs the
autocorrelation properties of the technology shock; this was set equal to 0.93
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for all three models. Notice also that the Þrst root, λ1 is similar; it takes the
values 0.797, 0.884 and 0.843 in the three different economies. It is this fact
that explains why the autocorrelation properties of the series appear similar
in all three simulations.

8 The Equity Premium Puzzle

The HATAX model does a reasonably good job of explaining business cycle
ßuctuations. It can also explain why the safe rate of return is less than the
growth rate. But it performs no better than the RBC model at explaining
why the return to equity has been historically much higher than the return
to treasury bills. In the RBC model the safe rate of return is too high. In
the HA and HATAX models the return to capital is too low.
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Figure 5: The Riskless Interest Rate and the Return to Capital

Figure 5 compares the GDP growth rate, the riskless rate of return and
the return to capital in the data with simulated data for the three models.
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In the data the �riskless rate� is the ex-post real rate computed as the T-bill
rate minus realized inßation and the return to capital is Robert Shiller�s series
on the S&P 500 as reported in [13]. In the models the riskless rate and the
return to capital are computed as linear approximations to the expressions;

Riskless rate = Et

·
π (S0)
Qt+1 (S0)

¸
= Et

·
ct+1
ct

(1 +m)

β

¸
,

Return to capital =
µ
α

ky
− δ
¶
(1− τ c) .

None of these series has been Þltered and, in the case of the simulated data,
the mean of the safe rate has been added back into the series. In all three
models the variance of the return to capital is much lower than the variance
of the return to the stock market from the U.S. data.

DATA RBC HA HATAX

Mean
Std. Dev.

Risky Safe
6.97 0.14
16 1.57

Risky Safe
7.05 7.05
1.06 0.31

Risky Safe
2.16 2.35
1.26 0.24

Risky Safe
2.42 2.42
0.68 0.17

Table 3: Rates of Return

Table 3 reports the means and standard deviations of the return to cap-
ital (labeled �risky�) and the risk-free rate (labeled �safe�). For the data
the means and standard deviations refer to 30 years of annual data from
1950 through 1979. For the models the table reports the average 30 year
mean and the average 30 year standard deviation for 10,000 different 30 year
simulations. Since the model statistics that I have reported are returns from
the linearized model (ignoring second moments) the equity premia in these
computed series are zero by construction. The risky and safe returns in the
model differ only because of sampling error.
The most striking feature of Figure 5 and of Table 3 is the tremendous

difference between volatilities of returns. In the data the return to the S&P
500 is approximately ten times greater than the mean value of the safe rate
of interest. In all three models the safe return is Þve to ten times less volatile
than the real return to T-bills in the data and, in addition, the risky rate
in the models is only three to four times greater than the safe return. Al-
though the HATAX model can capture the relative ranking growth rates and
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interest rates; along with the RBC model, it fails spectacularly at explaining
volatilities.12

9 Conclusion

I have developed a small macroeconomic model that may prove to be a use-
ful alternative to the representative agent model. It has one more parameter
than the standard real business cycle model; but otherwise it is identical in
all respects. In spite of this superÞcial similarity, the heterogeneous agent
economy has very different implications. First, and the main focus of the
current paper, the model can explain why the return to government debt has
been historically low. One might think that this issue was already understood
since the overlapping generations model can deliver equilibria for which the
interest rate is lower than the growth rate. But in overlapping generations
economies with no distortions, low interest rate economies are known to im-
ply that the investment rate should be counter-factually high. SpeciÞcally,
Abel et. al. showed that in dynamically inefficient economies with no dis-
tortions, the investment rate exceeds the proÞt rate. I have shown that one
can construct a tractable overlapping generations model in which the interest
rate is below the growth rate and yet the model passes the test of Abel et.
al. due to the presence of distortionary taxation. Further, my calibration is
consistent with cyclical ßuctuations in which the relative volatilities of con-
sumption, investment and labor supply match those of the U.S. data with
about the same degree of accuracy as a standard RBC model.
12To address the issue of excess volatility, in a related paper [7], I study an economy that

differs from the current model in two respects. First, preferences are logarithmic, rather
than linear, over leisure. This innovation is important since it changes the expression for
the pricing kernel in a signiÞcant way. Second, the model is an endowment economy in
which there is an endowed stock of capital that is priced by a sequence of agents. This
alternative structure is able to explain excess volatility and the equity premium but it
requires a departure from the one-sector model. In future work I hope to combine both
sets of ideas in a single model.
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10 Appendix

The model has the following equations.

kt+1 (1 + g) = kt (1− δ) + yt − ct,
1

ct
=

β

(1 +m)
Et

·
1

ct+1

µ
1 +

µ
α
yt+1
kt+1

− δ
¶
(1− τ c)

¶¸
,

yt = Stk
α
t l
1−α
t ,

λct =
(1− α) yt

lt
,

St = Sρt−1et

In the steady state,

k̄ (1 + g) = k̄ (1− δ) + ȳ − c̄,
1

c̄
=

β

(1 +m)
Et

·
1

c̄

³
1 +

³
α
ȳ

k̄
− δ
´
(1− τ c)

´¸
, (25)

ȳ = k̄αl̄1−α,

λc̄ =
(1− α) ȳ

l̄
,

S = 1. (26)

DeÞne the variables

ky =
k

y
, cy =

c

y

and solve the following equations for their steady state values.

(g + δ) ky = 1− cy (27)

[cy − ky (1− β)n] (1 +m) = βcy

·
1 +

µ
α

ky
− δ
¶
(1− τ c)

¸
For the calibration in Table 1, this leads to the solutions:

RBC : {cy = 0.728 58, ky = 2. 758 3} ,
HA : {cy = 0.579 50, ky = 4. 273 4, } ,

HATAX : {cy = 0.662 29, ky = 3. 432 1} .
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The linearized model is given by the equations,

�kt+1 = a1�kt + a2�yt + a3�ct

−�ct = a4�ct+1 + a5�kt+1 + a6�yt+1 + �wt+1,

�st+1 = ρ�st + et+1, (28)

�yt = �st + α�kt + (1− α) �lt,
�ct = �yt − �lt,

�wt+1 = Et
h
a4�ct+1 + a5�kt+1 + a6�yt+1

i
−
h
a4�ct+1 + a5�kt+1 + a6�yt+1

i
,

And the linearized value of investment is

it+1 =
1

1− cy yt+1 +
−cy
1− cy ct+1.

The linearization coefficients are deÞned as follows:

a1 =
(1− δ)
1 + g

, a2 =
1

(1 + g)

1

ky
,

a3 = − 1

(1 + g)

cy
ky
, a4 = −1 (29)

a5 = − α (1− t)
ky (1− δ (1− t)) + α (1− t) ,

a6 =
α (1− t)

ky (1− δ (1− t)) + α (1− t) .

In matrix form the static equations can be written as:

B1Xt +B2Yt = 0. (30)

where

B1 =

·
1− α −1
−1 1

¸
, B2 =

·
0 α 1
−1 0 0

¸
,

Xt =

·
�lt
�yt

¸
, Yt =

 �ct
�kt
�st

 ,
and the dynamic equations as
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A1Yt+1 +A2Xt+1 +A3Yt +A4Xt +A5Vt+1 = 0. (32)

where

A1 =

 0 1 0
a4 a5 0
0 0 1

 , A2 =

 0 0
0 a6
0 0

 ,
A3 =

 −a3 −a1 0
1 0 0
0 0 −ρ

 , A4 =

 0 −a2
0 0
0 0

 , (33)

A5 =

 0 0
0 1
−1 0

 .
Using (30) and (32) this leads to

Yt = J1Yt+1 + J2Vt+1

where

J1 = − ¡A3 −A4B−11 B2¢−1 ¡A1 −A2B−11 B2¢ ,
J2 = − ¡A3 −A4B−11 B2¢−1A5.

The eigenvalues of J1 for the three parameterizations are given by:

Eigenvalues in RBC case : 0.797 21, 1. 216 7, 1. 075 3

Eigenvalues in HA case : 0.884 49, 1. 042 1, 1. 075 3

Eigenvalues in HATAX case : 0.84329, 1. 0983, 1. 075 3

And the matrix Q−1 where Q is the matrix of eigenvectors is given by,13

RBC case: Q−1 =

 −2. 023 2 1 1. 375 2
1 0 −2. 393 8
0 0 1

 ,
13For the RBC case the matrix Q−1 was computed by inverting the matrix of eigen-

vectors using the eigenvector routine in ScientiÞc Workplace. For the HA and HATAX
cases I used the Jordan form routine which leads to a different normalization of the eigen-
vectors. In all three cases I checked the procedures by comparing them to the eigenvalue
decomposition in Gauss.
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HA case: Q−1 =

 1. 403 9 −0.682 24 −0.831 7
−2. 086 1× 10−9 1. 228× 10−7 1. 000 00

−0.522 1 1. 352 2× 10−7 1. 681 2

 ,
HATAX case: Q−1 =

 1. 860 2 −0.748 09 −1. 333 4
−1. 075 6× 10−6 2. 319 1× 10−7 1.0
−0.184 79 2. 289 8× 10−7 1. 231 8


The next step is to pick the row ofQ−1 associated with the smallest eigenvalue
of J1 and set the product of this row with the vector of variables equal to
zero to obtain a linear function relating �ct to �kt and �st.

RBC case:
£ −2. 023 2 1 1. 375 2

¤ �ct
�kt
�st

 = 0
�ct =

1

2. 023 2
�kt +

1. 375 2

2. 023 2
�st

q1 = 0.494 27, q2 = 0.679 72

HA case:
£
1. 403 9 −0.682 24 −0.831 7 ¤

 �ct
�kt
�st

 = 0
�ct =

682 24

1. 403 9
�kt +

0.831 7

1. 403 9
�st

q1 = 0.48596, q2 = 0.592 42

HA tax case:
£
1. 860 2 −0.748 09 −1. 333 4 ¤

 �ct
�kt
�st

 = 0
�ct =

0.748 09

1. 860 2
�kt +

1. 333 4

1. 860 2
�st

q1 = 0.402 16, q2 = 0.716 8

We now seek a stochastic linear difference equation in the state vectorn
�kt, �st

o
. To Þnd this equation, take the expression

�ct = q1�kt + q2�st
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and add it to the static equations to give an augmented set of static equations

 0 1− α −1
1 1 −1
−1 0 0

 �ct�lt
�yt

+
 α 1
0 0
q1 q2

 · �kt
�st

¸
= 0.

or

B3X
∗
t +B4Y

∗
t = 0,

where

B3 =

 0 1− α −1
1 1 −1
−1 0 0

 , B4 =

 α 1
0 0
q1 q2

 ,
X∗
t =

 �ct�lt
�yt

 , Y ∗t =
·
�kt
�st

¸
.

In terms of the vectors X∗ and Y ∗ the dynamic equations take the form:

A6Yt+1 +A7Yt +A8Xt +A9et+1 = 0,

where

A6 =

· −1 0
0 −1

¸
, A7 =

·
a1 0
0 ρ

¸
,

A8 =

·
a3 0 a2
0 0 0

¸
, A9 =

·
0
1

¸
.

or

A6Yt+1 +A7Yt +A8Xt +A9et+1 = 0

Yt+1 = J3Yt + J4et+1, (34)

where

J3 = −A−16
¡
A7 −A8B−13 B4

¢
, J4 = −A−16 A9.

To simulate data for Figures 3, 4 and 5 I generated a series of normal shocks
with standard deviation 0.016 and I simulated data using Equation (34)
where the parameter matrices J3 and J4 were chosen according to the three
different model speciÞcations given in Table 1.
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