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Abstract. This paper incorporates realistic demographic structure into macroeconomic policy
analysis by examining an overlapping generations model calibrated to match U.S. income data
over the lifecycle. We provide explicit conditions for the existence of multiple dynamically efficient
steady-state equilibria with positive debt levels for empirically relevant calibrations. Unlike rep-
resentative agent frameworks, indeterminacy arises even with active monetary and fiscal policies.
Following fundamental shocks, the model generates highly persistent swings in real interest rates
consistent with evidence on long-horizon trends. Our tractable approach bridges theoretical models
relying on infinite horizons and homogeneous agents with finite-lived heterogeneous consumers that
populate actual economies.

1. Introduction

The theoretical models that underpin macroeconomic policy analysis typically consist of infinite-

horizon rational agents that enable clean analytical results. However, a key question is whether

insights gleaned from such models apply to real-world economies comprised of finite-lived agents

with realistic demographic structures. This paper explores this issue by analyzing how monetary

and fiscal policies interact with private sector choices in an overlapping generations (OLG) model

calibrated to match U.S. demographic data.

We make several contributions. First, we prove theoretically in a simplified framework that

the combination of a hump-shaped income profile and a sufficiently low intertemporal elasticity

of substitution (IES) generates multiple balanced steady-state equilibria. Second, we construct a

62-period OLG model with capital accumulation where the income profile matches U.S. data and

show for an empirically relevant IES that multiple indeterminate balanced steady states indeed

arise. This violation of uniqueness occurs even with active monetary and fiscal policies, contrasting
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Herakles Polemarchakis, Mikko Puhakka, Thomas Sargent, Stephen Spear, Jaume Ventura and Jerzy Zabczyk, along
with conference participants at the Bank of England, Czech National Bank, International Monetary Fund, London
School of Economics, National Bank of Poland, Society for Economic Dynamics and University of Warwick, for their
comments and suggestions. Farmer reserves a special thanks for Costas Azariadis, who suggested that he work on
this problem more than thirty years ago. Any remaining errors are those of the authors.

1

mailto: R.Farmer.1@warwick.ac.uk
mailto: pzabczyk@imf.org


with standard deterministic representative agent models. Third, following shocks to fundamentals,

the calibrated OLG model generates prolonged swings in real interest rates consistent with evidence.

To understand the practical relevance of our analysis, note that one keystone of modern macroe-

conomic theory is using comparative statics to predict how interventions shift economic outcomes.

This exercise requires a unique mapping from fundamentals to equilibrium prices and quantities.

However, we demonstrate that moving from common simplifying assumptions to finite lives and

realistic demographics overturns basic determinacy properties that underlie policy evaluation. Con-

sequently, caution should be exercised in applying conventional results. Our framework provides a

foundation for constructing alternative macroeconomic models which can better account for actual

demographic patterns.

The rest of the paper proceeds as follows. Section 2 discusses related literature and how our

work departs from the seminal contribution of Aiyagari (1988). Section 3 explains the terminology

around active and passive monetary and fiscal policies whilst Section 4 derives theoretical conditions

for multiplicity in a simplified 3-period OLG model and explains the concept of indeterminacy.

Section 5 generalizes our framework to a T-period production economy and proves a theorem

that allows us to compute the degree of indeterminacy. Section 6 calibrates a 62-period model to

U.S. data and quantitatively demonstrates indeterminacy and prolonged real interest rate fluctua-

tions even with active policy regimes. Importantly, our calibrated parameter values match estimates

in the empirical literature. This section also checks the robustness of the key results across several

alternative model calibrations. Section 7 incorporates monetary policy rules like the Taylor rule and

derives additional restrictions on equilibria. Even with these additional restrictions we find that

real indeterminacy persists. Section 8 concludes by discussing limitations of common arguments

against relying on models with indeterminate or multiple equilibria, arguing that existing empirical

evidence actually favors the parameter regions identified by our OLG model.

2. The Relationship of our Work to Previous Literature

The potential for multiple steady-state equilibria in overlapping generations (OLG) models has

been long recognized since the seminal work of Samuelson (1958). And since the work of Kehoe and

Levine (1985) we have known that these models can display relative price indeterminacy. However,

most previous examples rely on highly stylized two or three period frameworks where indeterminacy

is purely monetary and lacks quantitative relevance (Gale, 1973; Azariadis, 1981; Farmer, 1986).

This paper makes several key advances. First, we provide explicit sufficient theoretical condi-

tions in a simplified three-period exchange economy for the emergence of multiple balanced steady

states based on the hump shape of realistic income profiles over the lifecycle and a sufficiently low

intertemporal elasticity of substitution (IES). Previous literature has lacked transparent analytical

results for multiplicity linked directly to life-cycle income patterns.

Second, we prove that incorporating capital accumulation and production preserves indeter-

minacy and positive debt levels at steady states, even when both monetary and fiscal policies
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are active. This finding contrasts sharply with analogous deterministic representative agent mod-

els that rely on an active/passive policy mix for determinacy, highlighting the first-order role of

demographic structure (Leeper, 1991; Woodford, 1994).

Third, we numerically verify the quantitative relevance of multiple indeterminate steady states

in a realistically calibrated 62-period OLG model where incomes match U.S. data. To our knowl-

edge, this is the first quantified demonstration in a reasonably sized OLG framework of the violations

of uniqueness and determinacy that arise under standard calibrations. Our analysis showcases both

the tractability and empirical plausibility of the mechanisms we identify.

Our results relate closely to several strands of literature. Chalk (2000) explores dynamic

properties of a production-based 2-period OLG model. Under certain concavity assumptions on

aggregate savings, he establishes generic existence of two steady states. We demonstrate explicitly

that introducing an income profile consistent with evidence violates these conditions, generating

further multiplicity.

Influential early work by Auerbach and Kotlikoff (1987) along with Ŕıos-Rull (1996) finds a

unique calibrated steady state equilibrium in OLG models. They presume critical monotonicity

properties of savings hold uniformly. We provide novel counterexamples displaying robust steady-

state indeterminacy for empirically relevant IES values and debt levels, overturning conventional

wisdom on the limited role of demographic realism (Aiyagari, 1988).

Kubler and Schmedders (2011) argue multiplicity generically disappears in economies with

long but finite horizons if agents have randomly distributed endowments. However, we establish

that retaining the hump-shaped pattern of incomes preserves indeterminacy despite expanding the

cohort length towards infinity. Our quantified framework helps reconcile theory with evidence on

the first-order relevance of demographic structure and finite lives (Reichlin, 1992).

Conceptually, our analysis also connects tightly to the Fiscal Theory of the Price Level (FTPL)

literature initiated by Leeper (1991) and Woodford (1994). This literature relies fundamentally on

conjectured determinacy emerging under active fiscal policy and passive monetary policy to pin

down price levels. We provide a compelling counterexample demonstrating that their proposed de-

terminacy arguments fail dramatically in realistic OLG economies once we account for demographic

heterogeneity and finite planning horizons.

Overall, by incorporating crucial real world features of finite lives and age-varying income

profiles motivated by microdata, our paper offers both novel theoretical results on the origins of

multiplicity and indeterminacy as well as quantitative evidence of these forces in action. We provide

a tractable foundation for building richer computational macroeconomic models complementing the

dominant but demographically limited infinite horizon paradigm.

3. Fiscal and Monetary Policy

We begin by defining key fiscal and monetary policy variables that play a role in later charac-

terizing fiscal-monetary policy regimes and how they interact with determinacy of equilibrium. Let

Bt denote the stock of government debt in dollar terms and let τ t be the level of lump-sum taxes.
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The government budget constraint in real terms is then given by:

bt+1 = Rt+1(bt + dt), t = 1, . . . ,∞. (1)

Here, bt ≡ Bt−1/pt is the real bond value, dt = gt − τ t is the real primary deficit where gt denotes

real spending, and Rt+1 is the gross real interest rate. The evolution of government debt equals

past debt that is rolled over plus the new issuance of debt to finance current deficits.

Monetary policy is summarized by a rule that sets the nominal interest rate it. We begin by

studying the case where the central bank follows a constant interest rate peg, fixing it at a given

level over time. This assumes a passive monetary policy regime. The resulting nominal interest

rate then determines the evolution of the gross inflation rate, Πt+1, through the Fisher equation,

which links the gross real rate Rt+1 and gross inflation by:

Rt+1 ≡
1 + it
Πt+1

. (2)

We can also write the government flow budget constraint as a single life-cycle constraint by consol-

idating the sequence of flow constraints and imposing the condition that the net present value of

future surpluses is finite. Defining Qt+k
t as the time t price for delivery of a commodity in period

t+ k, this leads to the following expression for the consolidated government budget constraint:

B0

p1
= −

∞∑
t=1

Qt
1dt + lim

T→∞
QT

1 bT . (3)

If limT→∞QT
1 bT exists and is equal to zero, Eqn. (3) defines a function relating the initial price

level to the real value of all future surpluses.

In New-Keynesian models in which the central bank sets an interest rate peg, the initial price

level would be indeterminate if the government were constrained to balance its budget for all paths

of {Qt
1}∞t=1 and all initial price levels (McCallum, 2001). To resolve this apparent indeterminacy of

the price level, advocates of the FTPL have argued that Equation (3) should be treated not as a

budget constraint, but as an equilibrium condition.1 Although Equation (1) is expressed in terms

of real variables, the debt instrument issued by the treasury is nominal. It follows that the real

value of debt in period 1 is determined by the period 1 price level through the definition

b1 ≡
B0

p1
.

This argument rests critically on the determinacy properties of the steady state. In subsequent

sections we will focus on the determinacy of equilibrium and on the interaction of fiscal and mone-

tary policies under alternative assumptions about population demographics. In particular, we will

provide novel counterexamples to established results about the determinacy of equilibria by incor-

porating finite lives and heterogeneity into an otherwise standard model of fiscal-monetary policy

interactions.

1See, for example, (Leeper, 1991; Woodford, 1994, 2001). For a recent exposition of the FTPL see Cochrane
(2023).
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4. A Three-Period-Lived Overlapping Generations Model

We develop a 3-period overlapping generations model to illustrate existence of multiple steady-

state equilibria. Preferences are given by the function

U =
ctt

1− 1
η + βctt+1

1− 1
η + β2ctt+2

1− 1
η

1− 1
η

, (4)

where β is the discount parameter and η is the IES. We index generations by superscripts and

calendar time by subscripts. Thus, ctτ is the consumption of generation t in period τ .

Consumers maximize utility subject to three budget constraints, one for each period of life,

ctt + stt+1 ≤ ω1, ctt+1 + stt+2 ≤ Rt+1s
t
t+1 + ω2, ctt+2 ≤ Rt+2s

t
t+2 + ω3, (5)

where ω ≡ {ω1, ω2, ω3} is the after-tax endowment profile and stτ is the demand for claims to τ +1

consumption goods by generation t in period τ . The subscript on the term ωj indexes age and we

assume throughout, that ωj does not depend on calendar time. The solution to this problem is

fully characterized by a pair of asset demand functions

stt+1(Rt+1, Rt+2), stt+2(Rt+1, Rt+2),

together with the requirement that the three budget constraints characterized in (5) hold with

equality.

Let the aggregate demand for assets by all agents alive at date t be defined by the function

Sω(Rt, Rt+1, Rt+2) ≡ st−1
t (Rt, Rt+1) + stt(Rt+1, Rt+2),

where the subscript ω on the function S indexes the dependence of the asset demand function on

the endowment profile. For this three-generation example, Sω(·) adds up the asset demand of the

newborns, this is the term stt(·), and the asset demands of the middle-aged, this is the term st−1
t (·).

Equilibrium in the asset markets requires that

Sω(Rt, Rt+1, Rt+2) = bt + dt, (6)

where bt + dt is the public sector borrowing requirement in period t and the dynamics of public

borrowing are given by the equation,

bt+1 = Rt+1(bt + dt). (7)

Beginning with period 2, non-stationary equilibria are characterized by bounded sequences of real

interest rates and debt that satisfy equations (6) and (7)and are consistent with a set of initial

conditions that arise from the behavior of people alive in the initial period.

Let fω(R) ≡ Sω(R,R,R) be the aggregate steady-state demand for assets by the private sector.

A steady-state equilibrium is a non-negative real number R and a real number b such that

fω(R) = b+ d, and b = R(b+ d). (8)
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When d = 0, the second of the two equations (8) reduces to the expression b = Rb which can

generically be satisfied in one of two ways. Either b = 0 or R = 1.2 We refer to an equilibrium

in which b = 0 as a balanced steady state and the equilibrium in which R = 1 as the golden rule

steady state.

We seek a sufficient condition for there to be multiple balanced steady-states. We choose an

endowment pattern of ω = {1, λη, λ2η}, where λη ∈ (0, 1) is the rate at which the endowment

declines with age. By allowing the endowment to depend on the IES we simplify the expression

for the interest rate in the balanced steady state. We show in Appendix A that the balanced

steady-state interest rate for this economy is given by the expression Rbal = λ/β and we denote

the savings function at this endowment pattern as fωλ
.

Next, we look at alternative hump-shaped endowment profiles which we parameterize by ω̃2

and we construct an alternative economy with a balanced equilibrium of R = Rbal. To maintain

the same balanced equilibrium as in the original economy we must ensure that the endowments add

up to the same aggregate endowment and that the net present value of the wealth of a new-born

individual is preserved. These two additional conditions allow us to solve for the first and third

period endowments, ω̃1 and ω̃3, as functions of ω̃2. We denote the alternative endowment pattern

by ω̃ = {ω̃1(ω̃2), ω̃2, ω̃3(ω̃2)} and the savings function by fω̃. The fact that both economies have

the same balanced steady state implies that fωλ
(Rbal) = fω̃(Rbal) = 0.

We prove, in Appendix A, that for a low enough value of the IES, the slope of the aggregate

savings function in our alternative economy changes sign as we move from a declining endowment

to a hump shaped endowment profile. As this sign change occurs, two new balanced equilibria

appear, one on each side of Rbal. This idea is illustrated in Figure 1. To construct this figure we

used the special case of β = λ = 1. For this case the slope of the savings function at the steady

state changes sign for values of

η <
ω̃2 − 1

4
. (9)

In the top panel of Figure 1 we graph the function fω̃ for η = 1/3.5, β = 1, λ = 1 and an

endowment profile ω̃ = {0.335, 2.33, 0.335}. For these parameters, the necessary condition for the

existence of multiple steady state equilibria, Inequality (9), is satisfied. In the bottom panel we

plot the excess demand for goods for these parameter values. This panel illustrates that when

R = 1, the golden rule steady state and the middle balanced steady state coincide. This property is

reflected in the fact that the excess demand for goods is tangent to the zero line at R = 1. Varying

β and or λ shifts both curves and leads to the separation of the golden rule steady-state equilibrium

from the middle of the three balanced steady-state equilibria.

The fact that there exist multiple steady states does not imply anything about the determinacy

properties of any one of them and for some parameter values there may exist other attracting sets

2The adjective ‘generically’ is required because there exists a set of measure zero in the parameter space for
which the two steady states coincide. When d ̸= 0, a continuity argument establishes that there is an open set
d ∈ (dL, dU ), which contains d = 0, for which the number of steady-state equilibria and the determinacy properties
of each steady-state equilibrium is the same as the case where d = 0. It follows that, as long as the primary budget
deficit is not too large, our analysis of the properties of equilibria for the case of d = 0 carries over to the case where
the treasury runs a primary deficit or a primary surplus.
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Figure 1. The Aggregate Savings Function for Parameter Values that Satisfy the
Multiplicity Condition

including limit cycles and, possibly, chaotic attractors. However, we found computationally that,

for a range of parameters, the golden rule steady state in our three-generation model displays

second-degree indeterminacy for an active-passive policy combination. The following paragraphs

define this concept and they explain its relevance for the theory of optimal fiscal and monetary

policy.
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Consider all pairs of initial values b1 ≡ B0/p1 and R2, that are close to the steady state values

of b and R at the golden rule. If there is a unique pair, {b1, R2}, such that the trajectory that

starts from this pair converges to the steady state, the golden rule steady state is said to be locally

determinate. If there is a one dimensional manifold of values – defined by a function b1 = ϕ(R2) –

such that all solutions to equations (6) and (7) that begin on this manifold converge to the steady

state; the golden rule steady state is said to display one degree of indeterminacy. If there is a two

dimensional manifold – containing the golden rule steady state – such that all solutions to equations

(6) and (7) that begin on this manifold converge to the steady state; the steady state is said to

display two degrees of indeterminacy.

The degree of indeterminacy of a steady state depends on the actions of the monetary and

fiscal authorities. The assumption of a constant nominal interest rate implies that monetary policy

is passive and the fact that dt is not responsive to variations in the value of outstanding debt

implies that fiscal policy is active. Arguably, this is the relevant policy mix for the recent policy

environment in which the interest rate was at or near zero and unresponsive to realized inflation

and where national treasuries were pursuing unrestrained spending programs that did not appear

responsive to growing debt to GDP ratios. For this mix of an active fiscal and a passive monetary

policy combination, our model displays two-degrees of indeterminacy at the golden rule steady

state. In a representative agent economy, this policy mix would cause the steady state targeted by

the monetary authorities to be determinate and it is that observation that was the initial impetus

to the development of the FTPL.

In Section 7 we relax the assumption of a passive monetary policy and we show that the golden

rule equilibrium still displays one degree of indeterminacy, even for the case in which monetary and

fiscal policy are both active. This finding means that, although there is a unique equilibrium

price sequence for every initial real interest rate, the real interest rate itself is not pinned down

by fundamentals and it implies that the lessons of the FTPL are not robust to realistic changes in

demographics.

5. The T−Period Production Economy

This section describes the generalization of the 3−generation example to a production economy

with T -generations. To handle this more general model we make two amendments to the exchange

economy. First, we add a production sector and derive four functions that describe the dependence

of the rental rate, the wage rate, the capital stock and output on the real interest rate. Second

we explain how the addition of additional generations complicates the initial conditions. The main

difference from our earlier 3−generation example is that in the T−generation model, the initial

conditions depend on the nominal asset positions of T − 2 non-generic generations and on the

initial price level.

We begin by describing the production sector. There is a unique commodity, denoted yt,

produced from labor, Lt and capital kt by a large number of competitive firms using a Cobb-

Douglas technology, yt = L1−θ
t kθt , where θ is the elasticity of output with respect to capital. Labor

is inelastically supplied and aggregate labor supply is fixed at Lt = 1. Let rt be the real rental rate,
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wt the real wage rate and let δ represent the rate of capital depreciation. We show in Appendix C

that profit maximization leads to the following four functions which describe the real rental rate,

the real wage rate, the capital stock and output at date t as functions of Rt.

rt = Fr(Rt) ≡ Rt − 1 + δ, wt = Fw(Rt) ≡ (1− θ)

(
θ

Fr(Rt)

) θ
1−θ

,

kt = Fk(Rt) ≡
(

θ

Fr(Rt)

) 1
1−θ

, yt = Fk(Rt)
θ.

Next we turn to the household sector. Households are endowed with efficiency units of labor,

distributed over the T periods of their lives according to the endowment profile {ω1, ω2, . . . ωT }
where

∑T
t=1 ωt = 1. In our calibrated example we fix the weights ωτ for τ = 1, . . . , T to mirror the

U.S. income distribution by age.

A generation t household solves the problem

max
{ctt,...,ctt+T−1}

U t(ctt, c
t
t+1, . . . , c

t
t+T−1),

such that

ctt + stt+1 ≤ ω1Fw(Rt), ctt+1 + stt+2 ≤ Rt+1s
t
t+1+ω2Fw(Rt+1),

. . . ctt+T−1 ≤ Rt+T−1s
t
t+T−1+ωTFw(Rt+T−1), (10)

where Fw(Rt) is the real wage at date t as a function of the gross interest rate. The solution to

this problem is characterized by a set of T − 1 savings functions, one for each of the first T − 1

periods of life together with the requirement that the T budget constraints (10) hold with equality.

In Appendix B, Section B.1, we characterize the solution to this problem for the case of CES

preferences and we find an explicit formula for the aggregate asset demand function. This function,

which we denote by S(Xt) is the sum of the savings functions at date t for generations t − T + 2

to t and it depends on the vector of interest rates Xt ≡ {Rt−T+2, . . . , Rt+T−1}.
Define the private asset-demand function

FA(Xt) ≡ S(Rt−T+2, . . . Rt+T−1)− Fk(Rt+1). (11)

A competitive equilibrium is a non-negative bounded sequence of real interest rates and a bounded

sequence of net government bond demands that satisfies equations (12) and (13).

FA(Xt) = bt + dt, (12)

bt+1 = Rt+1(bt + dt). (13)

Equation (12) characterizes sequences of real interest rates for which the net asset demand of

the private sector is equal to the public sector borrowing requirement. Equation (13) describes

the evolution of the public sector borrowing through time. These two equations differ from the

representation of equilibrium in the 3−generation model in two ways. First, private savings may be

held in the form of productive capital as well as in the form of government debt. This accounts for
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the appearance of the term Fk(Rt+1) in Equation (11). Second, the savings function of generation

t depends on Rt through the dependence of the date t wage on the capital stock.3

In Appendix C.2 we show that dynamic equilibria can be described by a difference equation

F (Xt, Xt−1) ≡ FA(Xt)−RtFA(Xt−1) + dt = 0, (14)

and we find a linear approximation to that difference equation around a steady state of the form

J1X̃t = J2X̃t−1, (15)

where X̃ is a vector of deviations from a steady state and the matrices J1 and J2 are the Jacobians

of F (·) with respect to Xt and Xt−1 evaluated at this steady state.

The analysis in Appendix C.2 establishes that Xt has 2(T − 1) elements and Appendix C.3

establishes that the initial conditions of the model place T − 1 restrictions on the elements of X1

and X2. Using these results, in Appendix, D we prove the following proposition which is based on

the work of Blanchard and Kahn (1980).

Proposition 1 (Blanchard-Kahn). Let K denote the number of generalized eigenvalues of (J1, J2)

with modulus greater than 1.4

• If K > T − 1 there are no bounded sequences that satisfy the equilibrium conditions in the

neighbourhood of X̄. In this case equilibrium does not exist.

• If K = T − 1 there is a unique bounded sequence that satisfies the equilibrium equations.

Further, this sequence converges asymptotically to the steady state
(
R̄, b̄

)
. In this case the

steady state equilibrium
(
R̄, b̄

)
is determinate.

• If K ∈ {0, . . . , T − 2} there is a T − 1 − K dimensional subspace of initial conditions

that satisfy the equilibrium equations. All of these initial conditions are associated with

sequences that converge asymptotically to the steady state
(
R̄, b̄

)
. In this case the steady

state equilibrium
(
R̄, b̄

)
is indeterminate with degree of indeterminacy equal to T − 1−K.

It follows from Proposition 1 that we can compute the degrees of determinacy around a given

steady-state equilibrium by comparing the number of generalized eigenvalues of (J1, J2) that lie

outside the unit circle with T − 1, where T is the number of generations. In the simulations

presented in Section 6, we use this proposition to compute these generalized eigenvalues in the

neighbourhood of each of the four steady states and we simulate non-stationary paths by iterating

a linear approximation to the function F (·) around the golden-rule steady state.5

In our model, fiscal policy is active but monetary policy is passive. In a representative agent

model, the FTPL dictates that this policy mix should lead to a unique initial price level. In Section

6 we provide an example of an OLG economy with a steady-state equilibrium where money has

3In the exchange economy, the functions stk(·) for k = t, . . . , t + T − 2 depend on {Rt+1, . . . , Rt+T−1}. In the
model with production they depend on {Rt, . . . , Rt+T−1}. The extra term Rt appears because household income
depends on wt which is a function of Rt in equilibrium.

4The generalized eigenvalues of (J1, J2), are values of λ ∈ C that solve the equation det(J1 − λJ2) = 0.
5The code used to generate all of our results is available online. Our code also replicates the findings reported in

Kehoe and Levine (1983).
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value and where the FTPL fails to hold. In this example, it is not only the initial price level that

is indeterminate; it is also the initial real interest rate.

6. A Sixty-Two Generation Example

In this section we construct a sixty-two generation model where each generation begins its

economic life at age 18 and in which a period corresponds to one year. We calibrate the age-profile

of the representative person’s endowment to U.S. data and we show that – for low values of the

intertemporal elasticity of substitution – there exists a steady state that displays real indeterminacy,

even when monetary and fiscal policy are both active.

We assume that the members of generation t maximize the utility function,

u
(
ctt, . . . , c

t
t+61

)
=

62∑
i=1

βi−1

ctt+i−1
1− 1

η − 1

1− 1
η

 ,

where η is the IES. The productivity of an agent’s labor varies over the lifecycle and all labor is

inelastically supplied to a competitive production sector which combines labor and capital in a

Cobb Douglas technology. Households save by holding productive capital and government debt

which are perfect substitutes. We calibrate the income profile of a representative generation to

U.S. data and we provide explicit formulas for the excess demand functions for this functional form

in Appendix B.

We graph our calibrated income profile in Figure 2. Our representative generation enters the

labour force at age 18, retires at age 66, and lives to age 79. We chose the lifespan to correspond

to current U.S. life expectancy at birth and we chose the retirement age to correspond to the age

at which a U.S. adult becomes eligible for social security benefits. For the working-age portion

of this profile we use data from Guvenen et al. (2021) which is available for ages 25 to 60. The

working-age income profiles for ages 18 to 24 and for ages 61 to 66, were extrapolated to earlier

and later years using log-linear interpolation. For the retirement portion we used data from the

U.S. Social Security Administration.

U.S. retirement income comes from three sources; private pensions, government social security

benefits, and Supplemental Security Income. We treat private pensions and government social

security benefits as perfect substitutes for private savings since the amount received in retirement

is a function of the amount contributed while working. To calibrate the available retirement income

that is independent of contributions, we used Supplementary Security Income which, for the U.S.,

we estimate at 0.137% of GDP.6

For the remaining parameters of our model we chose a primary budget deficit of dt = 0, an

annual discount rate of 0.995 and an elasticity of substitution of 0.034. The qualitative features of

the equilibria are robust to the existence of a positive primary deficit with an upper bound that

6From Table 2 of the March 2018 Social Security Administration Monthly Statistical Snapshot we learn that
the average monthly Supplemental Security Income for recipients aged 65 or older equalled $447 (with 2,240,000
claimants), which implies that total monthly nominal expenditure on Supplemental Security Income equalled $1,003
million. This compares to seasonally adjusted wage and salary disbursements (A576RC1 from FRED) in February
2018 of $8,618,700 million per annum, or $718,225 million per month. Back of the envelope calculations suggest that
Supplemental Security Income in retirement equalled 0.137% of total labour income.
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Figure 2. Normalized Endowment Profile. U.S. Data in Solid Red: Interpolated
Data in Dashed Blue.

depends on the discount rate. For the calibrated income profile depicted in Figure 2 and for this

choice of parameters, our model exhibits four steady-state equilibria. In Section 6 we explore the

robustness of the properties of our model to alternative choices for the discount parameter and for

the intertemporal elasticity of substitution.

The values and properties of all four steady-state equilibria are reported in Table 1. We refer to

the balanced steady-state equilibria as Steady State A, Steady State C and Steady State D and to

the golden-rule steady-state equilibrium as Steady State B. We see from this table that Steady States

B, C and D are associated with a non-negative interest rate and are therefore dynamically efficient.

Steady State A is associated with a negative interest rate of −9% and is therefore dynamically

inefficient.7

The sixty-two generation production economy, with a calibrated income profile, is similar to

the three generation endowment model from Section 4. In both models, the golden-rule steady-state

equilibrium displays second degree indeterminacy. And in both models, the steady-state price level

is positive and the initial price level is indeterminate even when fiscal policy is active. Importantly,

because the monetary steady state is second-degree indeterminate, indeterminacy can hold even

when both monetary and fiscal policy are active.

7See Cass (1972) for a definition and characterization of the conditions for dynamic efficiency.
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Equilibrium Real Interest Rates
Type Interest Value # Unstable # Free Initial Degree of

Rate of b̄ Roots Conditions Indeterminacy
Steady State A -9% 0 60 61 1
Steady State B 0% 21 % of GDP 59 61 2
Steady State C .004% 0 60 61 1
Steady State D 3.9% 0 61 61 0

Table 1. Steady States of the Sixty-Two Generation Model
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Figure 3. The Impact of a 1% Non-Fundamental Shock to the Initial Real Interest
Rate

In Figure 3 we show the result of an experiment in which we perturb the initial value of the

real interest rate by 1%, holding the price level, and the real wealth of all existing generations,

fixed at their steady-state values. The upper panel of this Figure 3 plots the path by which the real

interest rate returns to its steady-state value and the lower panel plots the return path of the value

of physical capital expressed as a fraction of GDP. We refer to this perturbation as a 1% shock to

the real interest rate.

This figure demonstrates that the return to the steady state following a relative price shock

of this nature is extremely slow and that during the return the model displays prolonged periods

13



of negative real interest rates.8 This slow persistent return is generated by a pair of complex roots

that are close to the unit circle and which only exist for calibrations of the model in which the

steady-state equilibrium is indeterminate.

3
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Evidence on long-run real interest rates

Here we present our estimates of long-run real interest rates for (up to) 20 countries between 1955 and the 
present.6 The list of countries (given in the appendix) comprises the largest economies in the world as 
measured by gross domestic product (GDP) in 2014 dollars.7 We broadly follow the approach used in 
Hamilton et al. (2015) to compute real interest rates. Wherever possible, we use the policy interest rate as 
our measure of the short-run nominal interest rate, and we use the then-current inflation rate as our measure 
of the expected inflation rate the following year to derive the short-run real interest rate (details are in the 
appendix). To compute long-run real interest rates, we calculate 11-year centered moving averages of 
annual real interest rates.8 Hereafter, we will refer to the 11-year centered moving averages of annual real 
interest rates as long-run real interest rates. Economists are typically interested in long-run real interest 
rates because they reflect the trends in the fundamental forces underlying them. Indeed, movements in real 
interest rates owing to frictions such as “sticky” prices and wages9 and to short-run shifts in productivity, oil 
prices, monetary or fiscal policy, and other forces “wash out” over long periods of time, leaving only trends 
in the fundamentals driving real interest rates over the long run.

Figure 1 presents long-run real interest rates for the G7 (Group of Seven) countries—namely, Canada, France, 
Germany, Italy, Japan, the United Kingdom, and the United States. Two patterns are apparent. First, G7 real 
rates are quite close to one another, especially in recent years. Second, broad trends in long-run real rates 
are discernible during three subperiods of the sample: 1) a decline from the early 1960s until the mid-1970s, 
followed by 2) an increase until the late 1980s and then 3) another decline through the present day.10

Figure 2 shows the median of the long-run real interest rates across our full sample of 20 countries for 
each year.11 It also presents the interquartile range of these rates across our full sample (that is, the range 

 
 

 

Notes: G7 means the Group of Seven. Long-run real interest rates are 11-year centered moving averages of annual 
real interest rates. (See the appendix for further details on the construction of the real interest rates.)
Sources: Authors’ calculations based on data from the International Monetary Fund, International Financial 
Statistics; and Haver Analytics.
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Figure 4. G7 Long-Run Real Interest Rates. Long-Run Real Interest Rates are
11-Year Centered Moving Averages of Annual Real Interest Rates.
Source: Figure 1 in Yi and Zhang (2017)

One may question whether the high degree of real interest rate persistence implied by our

model is excessive. Have such long swings in real interest rates been observed in data? To address

this question, Figure 4, reproduced from Yi and Zhang (2017), compares long run real interest

rates in the G7 and documents that low-frequency real rate cycles, similar to those generated by

our model, have characterized the evolution of real interest rates in all of these economies.9

To explore the robustness of our findings to alternative calibrations, in Table 2 we record

the properties of our model for different values of the annual discount rate and the intertemporal

elasticity of substitution. The example we featured in Section 6 had two degrees of indeterminacy

and positive valued debt at the monetary steady state. Table 2 demonstrates that this property is

not particularly special.

The table provides 40 different parameterizations of our model with intertemporal elasticity

of substitution parameters ranging from .01 to .17 and discount rates ranging from 0.986 to 1.

In all of these parameterizations we maintained the calibrated income profile illustrated in Figure

8Extending these simulations to much longer time periods confirms that these oscillations do eventually converge
back to the steady state.

9See Yi and Zhang (2017) for a discussion of why long-run moving averages are likely to characterize trends in
fundamental forces underlying real interest rates.
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Annual Discount Factor
0.986 0.988 0.990 0.992 0.994 0.996 0.998 1.00

IES

IES = 0.01
Degree of Indeterminacy 2 2 2 2 2 2 2 2
Value of Debt 18 19 19 20 21 21 22 23

IES = 0.05
Degree of Indeterminacy 2 2 2 2 2 2 2 0
Value of Debt 1 4 7 10 13 16 20 23

IES = 0.09
Degree of Indeterminacy 1 1 1 2 2 2 0 0
Value of Debt -16 -10 -5 1 6 12 17 23

IES = 0.13
Degree of Indeterminacy 1 1 1 1 1 2 0 0
Value of Debt -33 -25 -7 -9 -1 7 15 23

IES = 0.17
Degree of Indeterminacy 1 1 1 1 1 2 0 0
Value of Debt -50 -39 -29 -19 -8 2 12 23

Table 2. Robustness of Indeterminacy to Alternative Calibrations at the Golden
Rule Steady State

2. For each calibration Table 2 displays the number of degrees of indeterminacy and the value of

government debt at the golden-rule steady-state equilibrium. There are thirteen parameterizations

in which the golden-rule steady state displays one degree of indeterminacy and twenty in which it

displays two degrees of indeterminacy. In all twenty of these parameterizations, debt has positive

value in the steady state.

The calibrations in Table 2 demonstrate that our results require first, that the IES is low and

second, that the discount factor is close to one. In our baseline calibration we choose IES = .034

and a value for the discount factor of 0.995. Both of these values are extreme by the standards

of typical representative agent models but not outside the range of established estimates from the

empirical literature. Thimme (2017) reviews a range of micro and macro estimates of the IES and

he concludes that in “ ... almost every subsection of this paper we list studies that report estimates

not significantly different from 0, as well as studies that report estimates above 1”.10 Some of the

studies cited by Thimme assume the existence of a representative agent, and others use micro-data

sets. The main take away from his analysis is that there is no unique way to interpret the IES and

that the value assigned to the parameter in an empirical study is context dependent.

A similar comment applies to our choice for the discount factor. In representative agent models

there is a direct correspondence, between the rate of time preference and the rate of interest and a

discount factor of 0.995 would be inconsistent with data. However, our model has an overlapping

generations structure and in the OLG model there is no direct correspondence between these two

objects. We conclude from this discussion that parameter values that make sense in calibrated rep-

resentative agent models cannot be imported wholesale into the OLG environment. The parameters

are measuring different things.

10Thimme (2017, pp 248).
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7. Fiscal and Monetary Policy

In this section we discuss what happens when we relax either the assumption that fiscal policy

is active or the assumption that monetary policy is passive. We first show that passive fiscal policy

makes indeterminacy more likely. We then demonstrate that ensuring bounded inflation under an

active Taylor rule imposes an additional restriction on the set of equilibrium paths. This additional

restriction reduces the degree of indeterminacy by one.

Consider first what happens when fiscal policy is passive. To model a passive fiscal policy we

assume that the treasury raises taxes, τ t, in proportion to the real value of outstanding debt to

ensure that the primary deficit dt satisfies the equation

dt = −δbbt,

where δb ≥ 0 is a debt repayment parameter. Combining this assumption with the government

debt accumulation equation leads to the following amended debt accumulation equation,

bt+1 = [Rt+1 − δb]bt.

For values of [R̄ − δb] < 1 the effect of making fiscal policy passive is to introduce an additional

stability mechanism that increases the degree of indeterminacy at each of the four steady states

whenever δb is large enough. Passive fiscal policy makes indeterminacy more likely.

We next assume that fiscal policy is active and the central bank follows a Taylor rule (Taylor,

1999),

1 + it =

(
R̄

Π̄ϕπ

)
Π

1+ϕπ
t , t = 1, ...∞. (16)

Because this equation begins at date 1, the nominal interest rate in period 1 depends on p0 through

the definition, Π1 = p1/p0. We treat p0 as an initial condition that has the same status as the

initial value of nominal debt, B0. In Eq. (16), Π̄ is the inflation target, R̄ is the steady state real

interest rate and ϕπ is the response coefficient of the policy rate to deviations of inflation from

target. The Taylor Rule is passive if −1 ≤ ϕπ ≤ 0 and active if ϕπ > 0.

When the central bank follows a Taylor Rule, the real interest rate and the real value of

government debt continue to be determined by the bond market clearing equation and the debt

accumulation equation. It follows that the conditions we have characterized in previous sections

continue to ensure that the real interest rate and the real value of government debt remain bounded.

When the central bank follows a passive Taylor Rule, (see Appendix E.1) the following equation

characterizes the asymptotic behaviour of the future inflation rate,

lim
T→∞

Π̃T+1 = lim
T→∞

(1 + ϕπ)
T Π̃1 − lim

T→∞

T∑
s=1

(1 + ϕπ)
T−s R̃T+1, (17)

where κ ≡ Π̄/R̄ and the tilde denotes deviations from the steady state. The limit of the first term

on the right side of Equation (E2) is zero because 1 + ϕπ < 1 and the second term is finite as a

consequence of the boundedness of Rt. It follows that inflation is bounded whenever Rt is bounded.

This is a generalization of the argument we made for the boundedness of the inflation rate when
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the central bank follows an interest rate peg and it does not impose any additional restrictions on

the equations of the model for an equilibrium to be determinate.

When the central bank follows an active Taylor Rule, (see Appendix E.2), the initial price level

is determined by the forward-looking equation

p1 = p0

(
Π̄ + κ

+∞∑
s=1

(
1

1 + ϕπ

)s (
R1+s − R̄

))
. (18)

Importantly, this restriction on the set of equilibrium paths is additional to the restriction

p1 =
B0

b1
,

that we used to generate the equilibrium sequence of interest rates. It follows that we are no longer

free to pick R2 and p1 independently of each other. For any given choice of the initial interest rate,

R2, active monetary policy removes nominal indeterminacy. Crucially, however, it does not remove

real indeterminacy and there continue to be many possible choices for the initial real interest rate,

each of them associated with a different initial price level and a different equilibrium path for all

future real interest rates and all future inflation rates.

8. Discussion and Implications

The findings that realistic demographic modeling overturns standard determinacy results and

enables prolonged macroeconomic fluctuations after shocks raise several salient questions. We

discuss the relevance of our analysis for theoretical macroeconomics and some potential broader

implications.

For macroeconomic theory, a natural critique is that the real world evidently does not display

the high degree of indeterminacy and price-level drift we characterize. This criticism presumes

existing infinite horizon frameworks provide an accurate representation of the data and that the

parameters can be accurately calibrated to match steady state ratios. However, we have shown that

incorporating routine features of life-cycle demographics fundamentally alters model properties.

Since applied modeling inherently abstracts from aspects of reality for tractability, the discipline

may have been too quick to dismiss finite lives as largely unimportant. Our paper suggests this

neglect risks missing essential drivers of macroeconomic behavior.

Relatedly, one could claim that determinacy should be used as model selection criteria, deeming

indeterminate equilibria as less plausible. However, stability under learning dynamics does not

uniquely favor determinacy Evans and Honkapohja (2001). And recent work shows convergence to

Pareto optimal equilibria under deep reinforcement learning even when indeterminate Chen et al.

(2021). Our analysis urges caution in applying such equilibrium selection arguments.

Furthermore, recent events like the prolonged period of extremely low global real rates suggest

existing frameworks struggle to explain key prominent regularities. Our model endogenously gener-

ates the long-lasting swings in rates documented by Yi and Zhang (2017). More broadly, explicitly

incorporating demographic factors like changing lifespans, retirement patterns, inequality etc. may

prove indispensable for accurately tackling new empirical challenges in macroeconomics.
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For policymakers, the fragility of some canonical determinacy and effectiveness results to re-

alistic demography highlights risks in policy design relying solely on conventional models. Fiscal

and monetary interventions could yield unintended consequences if actual economic responses dif-

fer from traditional predictions. Our paper provides a stepping stone towards improving policy

guidance by capturing demographics. Expanding the dimensionality beyond representative agents

to heterogeneous cohorts remains crucial future work as populations age.

In sum, revisiting long-held assumptions of infinite horizons and homogeneous agents seems

imperative given empirical developments. We offer one plausible paradigm integrating lifecycle

demographics. Substantial scope for research leveraging our approach remains, especially regard-

ing normative analysis. But adequately reconciling theory and evidence appears difficult without

finitely-lived models. Our findings urge rethinking traditional foundations underlying macroeco-

nomic analysis.
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Appendix A. The Hump-shaped Profile and the IES

In this Appendix we establish that for the endowment profile ωλ ≡ {1, λη, λ2η} the balanced

steady-state equilibrium occurs at R = λ/β. We find an alternative endowment profile with the

same balanced steady-state and we find a sufficient condition for the alternative economy to have

two additional balanced steady-state equilibria.

A.1. Proof that R = λ/β is a steady-state equilibrium for the endowment profile ωλ. We

begin by deriving an expression for the steady-state savings function of an economy with a general

endowment profile ω. Let

Wω(R) ≡
ω1

1
+
ω2

R
+
ω3

R2
, (A1)

be the steady-state wealth of a new-born and define the function

ϕ(R) = 1 +
(βR)η

R
+

(βR)2η

R2
. (A2)

Applying the solution to the T -generation maximizing problem with CES preferences from Appen-

dix B we have the following steady-state consumption demand functions

c1(R) = ψ(R), c2(R) = (βR)ηψ(R), c3(R) = (βR)2ηψ(R), (A3)

where ψ(R) ≡ W (R)

ϕ(R)
.

Define the steady-state savings functions of the young and middle-aged as

s1(R) = ω1 − c1(R), s2(R) = Rs1(R) + ω2 − c2(R). (A4)

To establish that R = λ/β is an equilibrium notice that Wωλ
(λ/β) = ϕ(λ/β) = 1 + β + β2. It

follows from Eq. (A3) that c1 = 1, c2 = λη and c3 = λ2η. This establishes that for a value of

R = λ/β each agent chooses to consume their endowment and thus s1(λ/β) = s2(λ/β) = 0 and

fωλ
(λ/β) = 0 characterizes a balanced steady-state equilibrium.

A.2. Deriving an alternative endowment profile with the same balanced stead-state

equilibrium. We seek an alternative endowment pattern, ω̃, which preserves R = λ/β as a bal-

anced steady-state.
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It follows from Eqn. (A3) that consumption of each generation depends on Wω(R), which is

a function of the endowment pattern and ϕ(R), which is not. Hence if we choose an alternative

endowment for which Wω̃(R) = Wωλ
(R) the consumption demands of each generation will be the

same as in the original economy when R = λ/β. This leads to one restriction on the choice of an

alternative endowment pattern. A second restriction follows from the fact that, in equilibrium, the

sum of the consumptions demands equals the aggregate endowment.

We parameterize the alternative endowment by ω̃2 and we seek functions ω̃1(ω̃2) and ω̃3(ω̃2)

that satisfy these two restrictions. Eqn. (A5) restricts the wealth of a newborn to be the same in

the two economies and Eqn. (A6) equates the aggregate endowments.

ω̃1 +
ω̃2β

λ
+
ω̃3β

2

λ2
, = 1 +

ληβ

λ
+
λ2ηβ2

λ2
, (A5)

ω̃1 + ω̃2 + ω̃3 = 1 + λη + λ2η. (A6)

The functions ω̃1(ω̃2) and ω̃3(ω̃2) that satisfy these two equations are given by the expressions,

ω̃1(ω̃2) = 1 +
β
λλ

η(
1 + β

λ

) −
β
λ ω̃2(
1 + β

λ

) , (A7)

ω̃3(ω̃2) =
λη(

1 + β
λ

) + λ2η − ω̃2(
1 + β

λ

) . (A8)

A.3. Evaluating the slope of fω̃(R) at the balanced steady-state equilibrium. We seek

a parametric restriction under which the slope of the function fω̃ changes sign when evaluated at

R = λ/β. To highlight the relationship between the IES and the peaked endowment profile we

consider the parametric case when λ = β = 1. Aggregate savings is given by the expression,

fω̃(R) =

(
ω̃1(ω̃2)− ψ(R)

)
+R

(
ω̃1(ω̃2)− ψ(R)

)
+ ω̃2 − ψ(R)

(
βR

)η

. (A9)

Rearranging terms, this leads to the equation

fω̃(R) = ω̃1(ω̃2)

(
1 +R

)
+ ω̃2 − ψ(R)

(
1 +R+ (βR)η

)
. (A10)

For the parameter values λ = β = 1 the functions ω̃1(ω̃2), Wω̃(R) and ϕ(R) are given by the

following formulae

ω̃1(ω̃2) =
3− ω̃2

2
, Wω̃(R) = 1 +

1

R
+

1

R2
, ϕ(R) = 1 +Rη−1 +R2(η−1). (A11)
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Evaluating each term at R = λ/β = 1 gives

W (1) = 3, ϕ(1) = 3, from which it follows that ψ(1) = 1. (A12)

The partial derivatives of W (R) and ϕ(R) are given by

∂W

∂R
= − 1

R2
− 2

R3
,

∂ϕ

∂R
= (η − 1)Rη−2 + 2(η − 1)R2η−3, (A13)

which when evaluated at R = λ/β = 1 gives

∂W

∂R

∣∣∣∣
R=1

= −3,
∂ϕ

∂R

∣∣∣∣
R=1

= 3(η − 1). (A14)

Using the chain rule the partial derivative of fω̃(R) evaluated at the steady state R = λ/β = 1 is

equal to

∂fω̃
∂R

∣∣∣∣
R=1

= ω̃1(ω̃2)− ψ(1)

(
1 + η

)
− 3

∂ψ

∂R

∣∣∣∣
R=1

. (A15)

A further application of the chain rule to the function ψ(R) leads to the expression

∂ψ

∂R

∣∣∣∣
R=1

=
ϕ(1) ∂W

∂R

∣∣
R=1

−W (1) ∂ϕ
∂R

∣∣∣
R=1

W (1)2
=

−9− 9(η − 1)

9
= −η. (A16)

Putting all these pieces together gives

∂fω̃
∂R

∣∣∣∣
R=1

=
3− ω̃2

2
− (1 + η) + 3η =

1− ω̃2 + 4η

2
. (A17)

Setting this expression less than zero leads to Inequality (9) in the body of the paper. The creation

of two new steady states arises from the continuity of fω and the facts that fω(0) < 0 and fω(R) > 0

as R → ∞. A continuous function that starts below zero, ends above zero and crosses zero from

above at R = λ/β must cross at least two more times, once for an interest rate less than λ/β and

once for an interest rate great than λ/β.

□

Appendix B. Analytic Solutions for Excess Demand

B.1. The generic optimization problem. Consider a person with CES preferences who lives

for T periods and has perfect foresight of future prices. This person solves the problem,
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Problem 1.

max
{ctt,ctt+1,...,c

t
t+T−1}

a1(c
t
t)
α + a2(c

t
t+1)

α + . . .+ aT (c
t
t+T−1)

α

α
, (B1)

subject to the lifetime budget constraint

T∑
i=1

Qt−1+i

t ctt−1+i =

T∑
i=1

Qt−1+i

t ωiFw(Ri). (B2)

Here, cts is consumption in period s of a person born in period t, i ∈ 1, . . . T is age, and ωi is

the labor-endowment weight and Fw(Ri) is the real wage at date i as a function of the gross real

interest rate between periods i − 1 and i. The parameters ai are utility weights and α ≤ 1 is a

curvature parameter which is related to intertemporal substitution, η, by the identity

η ≡ 1

1− α
. (B3)

The term Qk
t , defined by the expression

Qk
t ≡

k∏
j=t+1

1

Rj
, Qt

t = 1, (B4)

is the relative price at date t of a commodity for delivery at date k.

This optimization problem includes the case of a constant discount factor β for which

[a1, a2 . . . , aT ] =
[
1, β, . . . , βT−1

]
(B5)

and logarithmic preferences which is the limiting case when α→ 0. We permit the discount factor

to vary with age to nest the Kehoe and Levine (1983) example which we use to cross-check our

results.

Proposition 2. The solution to Problem 1 is given by

ĉtt−1+k =
aηk
∑T

i=1

(
Qt−1+i

t ωiFw(Ri)
)(

Qt−1+k
t

)η∑T
i=1

(
Qt−1+i

t

)1−η
aηi

, k = 1, . . . , T. (B6)

where ĉtt−1+k denotes the consumption, at time t− 1 + k, of an agent born at time t.

Proof. The result follows directly from substituting the first-order conditions into the budget con-

straint and rearranging terms. □
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B.2. Non-generic optimization problems. Let j be an index that runs from 1 to T−1. Consider

a non-generic person born in period 1 − j with real assets
A1−j

t
p1

who lives for T − j periods. This

person solves Problem 2

Problem 2.

max
{c1−j

1 ,...,c1−j
1−j+T−1}

aT−j+1(c
1−j
1 )α + aT−j+2(c

1−j
2 )α + . . .+ aT (c

1−j
1−j+T−1)

α

α
, j = 1 . . . , T − 1 (B7)

subject to the lifetime budget constraint

(1−j)+T−1∑
k=1

Qk
1

(
c1−j
k − ωk−(1−j)+1Fw(Rk−(1−j)+1)

)
≤ A1−j

p1
. (B8)

Proposition 3. Let k ∈ {1, . . . , T − j}. The solution to Problem 2 is given by

ĉ1−j
k =

aηk+j

(
A1−j

t
p1

+
∑T−j

i=1 Qi
tωj+iFw(Rj+i)

)
(
Qt+k−1

t

)η∑T−j
i=1

(
Qi

t

)1−η
aηj+i

, k = 1 . . . 1− j + T − 1. (B9)

Proof. The problem above is identical to a generic one solved by an agent who has T − j periods

to live, whose endowments are
{
ωj+1Fw(Rj+1) +

A1−j
t
p1

, ωj+2Fw(Rj+2), . . . , ωTFw(RT )
}
, and whose

preference parameters in the utility function are {aj+1, aj+2, . . . , aT }. □

Appendix C. Equilibrium as the Solution to a Difference Equation

In Section 4 we showed that equilibria of the 3−generation model can be characterized as the

solution to a difference equation, determined by the behaviour of the generic generations, together

with a set of initial conditions determined by the behavior of the non-generic generations. In this

Appendix we generalize our analysis to the T−generation model with capital.

C.1. Production. Let output yt be produced by the function

yt = kθtL
1−θ
t , (C1)

and let capital depreciate at rate δ. Profit maximization leads to the expressions

wtLt = (1− θ)yt, rtkt = θyt, (C2)
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where rt is the real rental rate and wt is the real wage. No arbitrage implies

rt = Fr(Rt) ≡ Rt − 1 + δ, (C3)

where Rt is the gross real rate of interest. By further rearranging equations (C1) – (C3) and

imposing the labour supply equation, Lt = 1, we obtain the following expressions for wt, kt and yt

as functions of Rt;

wt = Fw(Rt) ≡ (1− θ)

(
θ

Fr(Rt)

) θ
1−θ

, (C4)

kt = Fk(Rt) ≡
(

θ

Fr(Rt)

) 1
1−θ

, (C5)

yt = Fk(Rt)
θ. (C6)

C.2. Equilibrium Difference Equation. Define the vector Xt and the function FA(Xt),

Xt = [Rt−T+2 . . . , Rt+T−1]
⊤, (C7)

FA(Xt) ≡ S(Rt−T+2, . . . Rt+T−1)− Fk(Rt+1), (C8)

where

S(Rt−T+2, . . . , Rt+T−1) ≡
t∑

τ=t−T+2

sτt (Rτ , Rτ+1, . . . , Rτ+T−1), (C9)

and the functional forms of the functions sτt (·) are derived by combining the solutions for the

consumption functions from Appendix B with the fact that the sequence of budget constraints,

(10), hold with equality.

Recall that a competitive equilibrium is characterized by a non-negative bounded sequence of

real interest rates and a bounded sequence of net government bond demands that satisfies equations

(C10) and (C11).

FA(Xt) = bt + dt, (C10)

bt+1 = Rt+1(bt + dt), (C11)
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and that a steady-state equilibrium is a non-negative real number R̄ and a (possibly negative) real

number b̄ that solve the equations,

S(R̄, R̄, . . . , R̄)− Fk(R) = b̄+ d, b̄ (1− R̄) = R̄ d. (C12)

Let {R̄, b̄} be a steady state equilibrium and let

R̃t ≡ Rt − R̄, and b̃t ≡ bt − b̄, (C13)

represent deviations of bt and Rt from their steady state values. Define a function F (·),

F (Xt, Xt−1) ≡ FA(Xt)−RtFA(Xt−1) + dt, (C14)

and let J1 and J2 represent the partial derivatives of this function with respect to Xt and Xt−1.

Using this notation, the local dynamics of equilibrium sequences close to the steady state can

be approximated as solutions to the linear difference equation

J1X̃t = J2X̃t−1, t = 2, . . . (C15)

with initial condition

X̃1 = X̄1. (C16)

The local stability of these equations depends on the spectrum of the matrix pencil (A,B), defined

as solutions to the equation det(J1 −λJ2). We refer to the elements of the spectrum as generalized

eigenvalues.

If one or more roots of λ(J1, J2) are outside of the unit circle there is no guarantee that se-

quences of interest factors and government debt generated by Equation (C15) will remain bounded.

To ensure stability, we must choose initial conditions that place X̃1 in the linear subspace associated

with the stable generalized eigenvalues of (J1, J2). The initial conditions are determined by the

non-generic equilibrium conditions which we turn to next.

C.3. Initial Conditions. Asset market equilibrium in periods 1 through T − 1 is characterized

by a family of aggregate net savings functions, GAt(·), for t = 1 . . . T − 1 where GAt(·) is aggregate

private savings net of the period t+ 1 capital stock. These functions are non-generic analogues of

the function FA(Xt). They are different at each date because the asset demand functions of the
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initial generations depend on the initial wealth distribution and the initial price level as well as on

real interest rates.

Consider the example of T = 4 which leads to the following asset market equilibrium equations

in periods 1 through 4,

GA1

(
A−1

p1
,
A0

p1
, k1, R2, R3, R4

)
− B0

p1
− d1 = 0, (C18)

GA2

(
A0

p1
, k1, R2, R3, R4, R5

)
−R2GA1

(
A−1

p1
,
A0

p1
, k1, R2, R3, R4

)
− d2 = 0, (C19)

GA3 (k1, R2, R3, R4, R5, R6)−R3GA2

(
A0

p1
, k1, R2, R3, R4, R5

)
− d3 = 0, (C20)

FA (R2, R3, R4, R5, R6, R7)−R4GA3 (k1, R2, R3, R4, R5, R6)− d4 = 0. (C21)

The function GA1 determines the net demand for government bonds in period 1 which must equal

the net supply, B0/p1 + d1. The period 1 capital stock enters the function GA1 as a state variable

that determines the date 1 real wage. The nominal liabilities A−1
1 and A0 enter because generations

−1 and 0 participate in the date 1 asset market. In period 2 the term A−1 is dropped from the

function GA2 because generation −1 does not enter the asset markets in their final period of life.

The term R5 enters this function because it enters the budget constraint of generation 2. In writing

equations (C19) through (C21) we have used the government budget rule to substitute out for bt,

using the equality of debt with net asset demand from the previous period.

An equilibrium for the 4-generation production economy is a first order non-linear vector-valued

difference equation in the 6 variables Xt ≡ {Rt−2, Rt−1, Rt, Rt+1, Rt+2, Rt+3} with restrictions on

X1 and X2 given by equations (C18) – (C21). These restrictions constitute a system of 4 equations

in the 7 unknowns variables p1, R2, R3, R4, R5, R6 and R7, leaving 3 free initial conditions.

Adding one period of life adds one additional period and one additional variable to this system

of equations. The general result is that if people live for T periods, there are T − 1 free initial

conditions. An equilibrium for the T -generation production economy is characterized by a first-

order vector-valued difference equation in the 2(T − 1) variables Xt ≡ {Rt−T+1, . . . , Rt+T−1} with

T − 1 free initial conditions.
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Appendix D. Proof of Proposition 1

Define the Jacobians J1(Xt, Xt−1) and J2(Xt, Xt−1)

J1(Xt, Xt−1) =
∂F (Xt, Xt−1)

∂Xt
, J2(Xt, Xt−1) =

∂F (Xt, Xt−1)

∂Xt−1
, (D1)

and let

Jk
1 = J1(X̄

k, X̄k), and Jk
2 = J2(X̄

k, X̄k), (D2)

be the values of the matrices J1 and J2 evaluated at steady state X̄k. In the following analysis, the

dependence of J1 and J2 on k will be suppressed.

Using the generalized Schur decomposition, (Golub and Loan, 1996, page 377), define unitary

matrices Q, and Z and upper triangular matrices S and T such that

J1 = Q⊤SZ⊤, and J2 = Q⊤TZ⊤. (D3)

The spectrum λ(J1, J2) ∈ C is the set of solutions to the generalized eigenvalue problem det(J1 −

λJ2) = 0, and the values of λ are equal to the ratios of the diagonal elements of S and T .

Using Equation (D3) and the fact that Q⊤Q and Z⊤Z are identity matrices we can write the

linear approximation to the function F (·) close to a steady state, Equation (15), as

SZ ′X̃t = TZ ′X̃t−1, (D4)

which we break into stable and unstable blocks by ordering the Schur decomposition such that all

of the elements of λ that are inside (outside) the unit circle appear in block 1 (block 2),S11 S12

0 S22

Ỹ 1
t

Ỹ 2
t

 =

T11 T12

0 T22

 Ỹ 1
t−1

Ỹ 2
t−1,

 (D5)

where

Ỹ 1
t = Z1X̃t, and Ỹ 2

t = Z2X̃t, (D6)

and the matrices Z1 and Z2 are a conformable partition of Z. Let K be the number of general-

ized eigenvalues with modulus greater than 1. To eliminate the effect of the unstable generalized
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eigenvalues on the dynamics of X̃t we set

Ỹ 2
1 = 0, (D7)

and notice that, from the block diagonality of S and T , if Ỹ 2
1 = 0 then

Ỹ 2
t = (S22

−1T22)
t−1Ỹ 2

1 = 0 for all t ≥ 1. (D8)

The requirement that equilibrium sequences remain bounded places K linear restrictions on the

elements of X̃.

To compute the values of Ỹ 1
t , we use Equation (D5) and the fact that Ỹ 2

t = 0 for all t to

compute

Ỹ 1
t = (s−1

11 T11)
t−1Ỹ 1

1 . (D9)

We established in Section C.3 that the non-generic equilibrium conditions place T − 1 linear re-

strictions on the 2(T − 1) elements of Xt leaving T − 1 free initial conditions. It follows that the

above construction is feasible and unique whenever K = T − 1, infeasible if K > T − 1 and that

there are T − 1−K feasible choices for the initial conditions whenever K < T − 1. This establishes

Proposition 1.

Appendix E. Inflation Under a Taylor Rule

In this Appendix we derive equations that characterize the behaviour of the inflation rate when

the Taylor Rule is passive and when it is active.

E.1. The case of a passive Taylor Rule. Using the Taylor rule to substitute for 1 + it in the

Fisher parity condition yields the following difference equation for inflation

Πt+1 =

(
R̄

Rt+1

)(
Πt

Π̄

)ϕπ

Πt, for all t = 1, . . .∞ (E1)

which we linearize around a steady state to obtain

Π̃t+1 = (1 + ϕπ) Π̃t − κR̃t+1, for all t = 1, . . . ,∞. (E2)
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Here, κ ≡ Π̄/R̄ and the tilde denotes deviations from the steady state. Iterating Equation (E2) we

obtain

lim
T→∞

Π̃T+1 = lim
T→∞

(1 + ϕπ)
T Π̃1 − lim

T→∞

T∑
s=1

(1 + ϕπ)
T−s R̃T+1. (E3)

This is Equation (17) in Section 7.

E.2. The case of an active Taylor Rule. To find conditions under which inflation is bounded

when the Taylor Rule is active, we use Equation E2 to write the inflation rate at date t as a function

of all future real interest rates and all future inflation rates,

Π̃t = κ

+∞∑
s=1

(
1

1 + ϕπ

)s

R̃t+s + lim
T−→∞

(
1

1 + ϕπ

)T

Π̃t+T . (E4)

If inflation is bounded, and if the Taylor Rule is active, the second term on the right side of Equation

(18) is zero. Evaluating Equation (E4) at t = 1, we arrive the following expression for the initial

gross inflation rate.

Π̃1 ≡
(
Π̃1 − Π̄

)
= κ

+∞∑
s=1

(
1

1 + ϕπ

)s

R̃1+s (E5)

Using the definition of inflation in period 1, Equation (E5) places the following restriction on the

initial price level,

p1 = p0

(
Π̄ + κ

+∞∑
s=1

(
1

1 + ϕπ

)s (
R1+s − R̄

))
. (E6)

This is Equation (18) in Section 7.

□
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