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ABSTRACT

This paper combines the two ‘workhorses’ of macroeconomics: the Ramsey model
and the overlapping generations model. A new dynasty of infinite horizon families
appears every period. Each dynasty is characterized by the same Kreps-Porteus
utility functional that I refer to as RINCE, which is an acronymn for the char-
acteristic properties of Risk Neutrality and a Constant Elasticity of intertemporal
substitution. Preferences in this class allow exact solutions to be obtained to the
agent’s intertemporal choice problem. The solutions to each problem are aggre-
gated across agents to arrive at a low order stochastic difference equation that
characterizes equilibria in the economy.



1 Introduction

This paper introduces a class of stochastic growth models that provides a bridge
between the two major paradigms that are currently in use. The model consists
of a countable number of dynastic families each of which solves an infinite horizon
stochastic programming problem. A new generation of agents enters the model in
every period which implies that the number of families grows through time. Sta-
tionary equilibria are characterized as limiting distributions of per-capita variables.
The model is similar to non-stochastic economies that are described by Blanchard
(1] and Weil [10]. It behaves, for most parameter values, exactly like a stochastic
two period overlapping generations economy. But for a particular value of a param-
eter that describes the rate of creation of new dynasties the economy #s a Ramsey
representative agent economy.

The paper introduces a technique that allows one to analyse stochastic equilibria
in situations for which the welfare theorems fail. Most existing work begins with
the idea that equilibria can be represented as the solution to a single maximization
problem and it characterizes equilibria as solutions to stochastic Euler equations.
The alternative approach in this paper is to exploit a risk neutrality assumption in
order to be able to solve each agents’ stochastic programming problem explicitly.
This allows one to construct equilibria in stochastic economies by building up the
aggregate market clearing equations and searching for a fixed point in function

space. This technique is likely to be useful in other stochastic models.

2 The Generational Structure of the Economy

The economy, at each date, is populated by a finite number of infinitely lived
agents. These agents are referred to as families or alternatively as dynasties and it
is assumed that all members of a given generation are alike. Time is discrete and
each period of time, a new dynasty is created. Superscripts on a variable refer to
the date of birth of a dynasty and subscripts refer to calender time.

The world has a beginning, referred to as date 1, at which there exists a finite



number, n!, of agents of generation 1. The growth factor:

is constant and greater than or equal to 1. When ~ is equal to one the number of
agents in the economy is constant and equal to nl. This case is a very special one
since the economy collapses to a representative agent economy. For positive growth
rates the definition of v allows one to compute the number of agents of generation
T forall 7 > 1.

3 The Individual’s Problem

I will introduce a number of assumptions about the stochastic structure of endow-
ments and prices. This structure is taken as given by agents in the economy each of
whom solves a stochastic dynamic programing problem. In section 8 this structure
will be shown to be justified in the sense that there exists an equilibrium in which
prices and endowments behave in the manner that agents believe them to.

3.1 Characterizing the Distribution of Uncertainty that the Agent Takes

as Given

The purpose of this section is to define two sets {1 and Z which represent the spaces
in which endowments and interest factors may evolve. I assume that agents may
trade a single asset that pays a stochastic return R;; the space Z defines the values
that can be taken by R.! The sets {1 and Z are also used to define the sample
space which is the space from which infinite sequences of endowments and interest

factors are drawn.

1The assumption of a single asset would follow from more primitive restrictions on the observ-
ability of endowments in economies with idiosyncratic risk although this explanation is not available
here since the endowment is assumed to be common. I have chosen to explore the incomplete mar-
kets assumption mainly for tractability. It leads to a economy that may characterised by a single
difference equation. Complete market economies generate equilibria that are characterized by an
infinite dimensional set of assets.



Agents may transfer resources between periods by buying or selling short a
single security that pays a real stochastic return R.? For the purpose of solving the
individual’s problem I assume that the interest factor and the endowment of the
agent are described by a known Markov process. The state space of this process is
defined below:

Definition 1 Let the sets N and Z be defined by:

0 ={we€[A,B]|[4,B] C R},

Z = {ze [e,D]|C>1,D< i —1/3)(1—5)}'

Let X=2 x0N% S =X x0 and let S be the Borel sets of S.

I will refer to the vector s € S as the state of the economy where the first element
of s is the interest factor at date t and the subsequent three elements represent the
agent’s endowments at periods t, t-1 and t-2 respectively. Notice that the definition
of the set S implies that the interest factor will be greater than one in every period
and that the endowment lies in a compact interval of the positive real line. The
upper bound on the set Z is used later in the paper to demonstrate that a certain
operator is a contraction. It is a stronger condition that is necessary but not a
particularly restrictive one.

For some purposes it will be useful to be able to refer to the set of all possible
realizations of infinite sequences of the form {s,}3,. The following notation is

introduced for this purpose:

2] refer to this security as debt since, under one interpretation of the model, debt offers a fixed
nominal return and its yield fluctuates randomly in response to a set of self-fulfilling price level
movements. Alternatively one can think of this security as an equity contract in the gross national
product. This alternative interpretation allows me to describe equilibria in which the value of
government liabilities is negative. Negative debt equilibria are not supportable by a security with a
fixed nominal yield although I suspect that if one were to introduce a medium of exchange function
for holding fiat money (as opposed to the store of value function that is captured by the overlapping
generations model) one might rescue the interpretation of debt as a fixed nominal claim even in the
case of negative debt equilibria.



Definition 2 The sample space ® is the collection of all infinste sequences {sv}3,
such that s, € S. A single realization of {s,}%2, will be denoted by ¢.

The next assumption uses the definition of the state space to summarize the

information that is taken as given by the consumers in the economy:

Assumption 1 The sequence of endowments is independently distributed with a
time invariant marginal density u(w) : 1 — [0,1], which places positive probability
weight on every element of Q. The interest factor evolves according to a known
stochastic difference equation f : S — Z. This difference equation defines a stabled
Markov transition function x(S, §),S x S — [0,1].

There is little to be gained from generalizing the assumption that endowments are
independently distributed although the generalization is not difficult. Section 8
shows that a stochastic difference equation f, defined on a set Z with these prop-
erties, may be derived as part of a competitive equilibrium. The assumption that
u places positive weight on every element of {1 is used to establish convergence, of

the Markov process that characterizes equilibria, to a unique invariant distribution.

It is worth observing that the notation does not index endowment uncertainty
by generation. This key assumption implies that endowment shocks are economy-
wide rather than idiosyncratic. The assumption is used to show that the solution
to the consumer’s optimizing problem does not violate non-negativity constraints
on consumption. The non-negativity constraints will not be satisfied for all possible
probability distributions over sequences of endowments and interest rates but, in
equilibrium, rates of return are determined endogenously by the transition function,
x. In the case in which all agents face the same endowment sequence, one may
show that the solution to the choice problem that I will characterize in theorem (1)

induces an equilibrium transition function for which these constraints do not bind.*

3SA Markov transition function is stable if its associated Markov operator takes the space of
bounded continuous functions into itself. In this case x is said to possess the Feller property,
(Stokey Lucas and Prescott [9] page 20).

41t is possible to derive a version of the model in which there is idiosyncratic risk but one must



3.2 Placing Bounds on the Agent’s Lifecycle Choices

In the section 3.3 I introduce a stochastic programming problem that is solved by
each dynasty. For the solution to this problem to be well defined, one must show
that the agent’s wealth is bounded above. The main result that is established in
section 3.2 is the existence of a such a bound.

Definition 3 The present value shadow price is a function Pt’ : Zi7t — R, defined
by:

=1 ifj=t;
1
[R=t+1 R(sv)

b J -]
|

if j > t.

P,;i is the shadow price of a date j state dependent commodity at date t. The ad-
jective “shadow” is attached since the market for contingent commodities is closed

and agents are unable to trade at these prices.

Definition 4 The agent’s human wealth is a function h: ® — R, defined by:

v
h(#) = lim 3w P o
=t

Human wealth is a random variable that takes values which are functions of
the realizations of ¢. It represents the net present value of the family’s endowment
stream if the sequence of states is ¢. Since agents are unable to trade in a complete
set of contingent claims markets, there is a different value of A for every possible
value of ¢, each of which enters a separate infinite horizon budget constraint. Each
of these constraints places an upper bound on the possible values of current con-
sumption. The following lemma establishes that the support of h(¢) is compact

which implies that there exists one constraint which is most binding.

be much more careful about the structure of assets. It seems likely that one might find equilibria,
in such a model, that are supported by assets with payoffs that are linked to the realisation of
individual endowments but this issue is beyond the scope of the current paper.



Lemma 1 The value of h(9) lies in a compact interval H C R, for every realiza-
tion of ¢ € ®.

Proof

Since the support of 0} is bounded above, by B, and below, by A > 0, each element
of {wy}%, is uniformly bounded above and below. Since the lower bound of Z
is strictly greater than one, every possible realization of the sequence of interest
factors is strictly greater than one. It follows immediatly that every element of the
weighted sum 572, ijf exists and is bounded above and below. Let H represent
the interval [infy h(¢),s5ups h(9)]. H is closed since @ is closed. It follows that H
is compact. O

In any state, s, there will exist a subset of ® with first element s. Call this
subset ®,. The set ®, consists of the possible realizations of ¢ conditional on the
observation that the current state is s. Since the set of possible realizations of future
endowments is closed and bounded it follows that the agent’s human wealth will

have a smallest element. This observation motivates the following definition:

Definition 5 The minimum value of human wealth is a function h:S— Ry:

h(e) = miph(9)- @)

With one further assumption, this definition may be used to place an upper

bound on the consumption of a family in any period:

Assumption 2 The present value of the limit of the family’s assets, for every
realization of ¢, is greater than or equal to zero.

lim PT"lar > 0.

T—o00

Assumption 2 may be used to construct an intertemporal budget constraint in each
state of nature from the sequence of state contingent period by period constraints.

This set of intertemporal budget constraints places an upper bound on consumption



that will be attained if the family consumes all of its financial wealth and, in ad-
dition, it borrows enough resources to consume the present value of its endowment
sequence in the worst possible realization of ¢,.5

Let the variable a"(s) represent the quantity of the single financial security that
is held by a family that comes into existence at date 7; (this variable may be
positive or negative). The upper bound on consumption in any state is given by

the expression:

¢’(s) < R(s)a"(s) + A(s), (3)

where the assets a” evolve according to the stochastic difference equation:

a’(s) = R(s)a’(s) +w(s) —c"(s); (4)
a] = 0, 7=2,...00 (5)
Rl = T. (6)

Equation (5) represents the assumption that generations born in periods greater
than or equal to 2 come into existence with zero wealth. I will treat the initial
generation differently by endowing it with initial wealth T which may be positive
or negative. This initial wealth represents a tax or transfer from the government.
In addition to the constraints that are imposed by the budget identity (4) and
by the initial condition, equation (5), I require consumption to be non-negative:

c"(s) >0. : (7

3.3 The Family’s Choice Problem

A family of generation 7 is assumed to solve an infinite horizon stochastic program-

ming problem that has the following value function representation, where I have

5This definition of the constraint set implies that borrowing must be repayed with probability
one in every state. It might be argued that this constraint is too strong, and that it would be more
reasonable to permit bankruptcy in some states. The definition that I employ, however, is implied
by the assumption that there exists a single security. A model in which bankruptcy is permitted in
some states, would require a richer set of financial markets.



dropped the superscript 7, to cut down on notational clutter:
v[R(s)a(s), s| = Tv[R(s)a(s),s]. (8)

The function v : R x S — R, represents the maximum possible utility that can be
attained in state s where the operator T is given by the expression:

1- ] (] ! ! A
Tv[R(s)a(s),s| = c?:;gr[c(s)] A [/; v[R(s')a(s'),s'|x(s, ds )] , (9)
the constraint set I' is defined as:
T = {0 < ¢(s) < R(s)a(s) + R(s)}, (10)

and the assets of the agent evolve according to equation (4).

The preferences that are defined by the operator T are a generalization to the
infinite horizon case of RINCE utility studied in Farmer (2] and axiomatized by
Kreps and Porteus [7]. These preferences are able to separate the families atti-
tudes to risk from its attitude to the timing of consumption by dropping one of the
von-Neumann Morgenstern axioms applied to a class of intertemporal lotteries. By
choosing to aggregate current consumption and expected future utility with a func-
tion that is homogenous of the first degree, one introduces a kind of risk neutrality
in the sense that the agent with these preferences is indifferent to the distribution
of one-step-ahead endowment uncertainty. This risk neutrality property allows one
to find a closed form solution for the consumption rule that can be aggregated
across individuals. In the case of perfect certainty these preferences generate the
same ordinal choices that would be made by a family with logarithmic utility and
a discount factor equal to B.

4 The Solution to the Family’s Choice Problem

4.1 Some Definitions

The solution to the agents’ choice problem makes use of two concepts. One of these

concepts is average human wealth and the other is a stochastic discount factor that



summarizes the influence of future prices on current decisions. These two concepts

are defined in this section.

The first definition summarizes the way that prices influence decisions.

Definition 8 The function Q : S — R, is the unique solution to the equation:
Q(s) = (TQ)(s), (11)

where;
(TQ)(s) = [ Re)FIQ(")x(s:ds),

and,
Flz] = (1 - )9

The uniqueness of Q follows from the N-stage contraction theorem applied to the
operator T : B(S) — B(S) where B(S) is the space of bounded continuous func-
tions from S to R,.® The function Q appears in the solution to the consumer’s
problem in which terms of the form F[Q(s')]/Q(s) play the role of stochastic dis-
count factors. When there is no uncertainty F[Q(s')]/Q(s) is just the inverse of the
interest factor. In the case of non-degenerate uncertainty these terms are used by
the family to discount the value of its future endowments.

The second definition, of average human wealth plays an important role in the
solution to the agent’s optimization problem:

Definition 7 Average human wealth h(s) : S — R, is the unique solution to the
functional equation:
h(s) = (Th)(s), (12)

where,

¢)F(Q(s")]x(s, ds')
Q(s) '

8Stokey Lucas and Prescott {9] page 53. For large N the operator TV is a contraction of modulus
§ = BP(1 - B)(1-9) supg R(s). The definition of the set Z implies that, § < 1.

TR = ule) + [




This definition, of average human wealth, collapses to the standard definition of
the discounted present value of endowments in the case when all uncertainty is
degenerate. The proof of the existence and uniqueness of a function h that satisfies
equation (12) follows from observing that the operator TV, for large enough N,
satisfies Blackwells sufficient conditions for a contraction on the space of continuous

bounded functions from S to R,.7

4.2 Characterizing the Solution

The solution to the family’s choice problem is summarized by the following theorem:

Theorem 1 Let the function a*(s) : S — R, represent the family’s assets when it
follows the consumption rule:

c*(s) = (1 - B)W (s), (13)
where,
W (s) = R(s)a’(s) + h(s), (14)
and a*(s) evolves according to the budget equation;
a*(s') = R(s)a’(s) + w(s) — c*(s). (15)

If ¢* remains non-negative in all states then c* 1s the policy function that solves

equation 8. The value function v*(s) is given by:
v*(s) = F[Q(s)]W (s). (16)

The proof of theorem 1 is presented in appendix 1. The condition of the theo-
rem, that consumption remains positive, requires one to check that the proposed
solution generates a sequence of values for the family’s assets that does not vio-
late the borrowing constraint in any state. This condition will not be satisfied for
arbitrary Markov processes that define the evolution of endowments and interest
factors. However, for the case when endowments are identical across individuals (no
idiosyncratic risk) it is possible to show that there exists an equilibrium transition
function x for which this solution is valid.

7See Stokey Lucas and Prescott {9] theorem 3.3.

10



5 The Aggregate Economy and the Definition of Policy

There are two purposes to this section of the paper. The first is to define a proce-
dure for aggregating quantities across dynasties and the second is to introduce the
equations that define market clearing. The discussion of market clearing is used to
define the polices that the government follows in equilibrium.

Although it proved convenient to drop the superscript 7 when referring to the
solution to the problem of a single dynasty it is important, when discussing the
aggregate economy, to keep the notion of individual and aggregate variables distinct.
In the remainder of the paper, I use a supercripted variable to refer to the individual
dynasty and the same variable with no superscript will refer to the average of the
individual variable across all dynasties. For example, for any variable z” (s), define
the aggregate per capita value, z(s), as:

T
a(e) = B2 ()
where the summation is over all existing dynasties. To illustrate the use of this
notation, consider the definition of aggregate consumption. The assumption of
RINCE preferences implies that the family’s consumption ¢” is a linear function of
wealth. This property allows one to define aggregate consumption as:

¢(s) = (1 - B)[R(s)a(s) + h(s)]. (18)
A similar expression defines aggregate asset accumulation:
~a(s') = R(s)a(s) + w(s) — ¢(s). (29)

In this case one is weighting future assets by a greater number of generations which
explains the appearance of the term 7 on the left-hand-side of the equation. The
expression for aggregate average human wealth is simpler, since all agents regard
the future in the same way. This assumption implies that average aggregate human
wealth is equal to individual average human wealth, h(s), a variable which is the
same for each dynasty.

11



To describe an equilibrium one must impose a market clearing condition. Goods
market clearing requires that aggregate per-capita consumption should be equal to

the aggregate per-capita endowment in each period, that is:

w(s) = ¢(s). (20)

To define asset market equilibrium one must describe the behavior of the supply
of assets. In the absence of an outside agency the aggregate private stock of as-
sets would be required, in equilibrium, to equal zero. But in an economy with a
government that has the authority to tax future generations it is possible for the
aggregate stock of outside assets to be either positive or negative. This stock will
be referred to as government debt, although I will allow government debt to be
either positive or negative.

The set of equilibria will not be independent of the class of policies that is -
pursued by the government. In this paper I will study policies in the following

class:

(') = R(s)b(s), (21)
Rlbl = T, (22)

where the initial condition, equation (22), represents a tax or transfer to the first
generation depending on whether it is positive or negative. If Ryb; is negative
the government lends to the private sector, if it is positive the public lends to the
government. These policies are a special case of balanced budget polices. They are
a good place to begin a study of endowment economies since they may be shown to
induce equilibria that are similar to the class of monetary equilibria that are known
to exist in two period overlapping generations models.

In equilibrium, the value of government debt equals the net value of private
assets:

b(s) = a(s); (23)

It follows that private assets will evolve in the same manner as government debt:

va(s') = R(s)a(s). (24)

12



6 Competitive Equilibria: A Definition

A competitive equilibrium is a transition function x(S, §) and a policy function c*(s)

with the properties:

1. The function ¢* solves each family’s optimizing problem (8) when agents believe

that the state will evolve according to the Markov transition function x.

2. The actual evolution of interest factors and endowments is governed by the
transition function x when interest rates adjust each period to ensure zero

excess demand in the goods and asset markets.

7 Difference Equations that Characterize Equilibria

In this section I study the proprties of a pair of stochastic difference equations that
describe the behavior of aggregate per-capita assets and of interest factors. To
begin with I assert that these equations characterize equilibria and in section 8 1
state a theorem to this effect.

Definition 8 The asset evolution equation is a function g : Y — Y given by the

ezpression:

a; = g(@e-1; W1, We—2) = T )
ens) = e e

(25)

The interest factor evolution equation is a function f : Z — Z given by the expres-

ston:
Wy

Rt = f(Rt-l;wt’ We—1, UJt—z) = Wt—l[ﬂ + %] - ﬁ(Rt—l/’y)wt—z.

(26)

The sets Y and Z on which the functions g and f are defined are chosen by picking
upper and lower bounds for @ and R that map intervals [0,E| =Y and [C,D] =
Z into themselves for all possible realizations of w. For some values of B and 7,
this construction leads to a set Y that is contained in R, and for other values
it leads to a set that is contained in R_. This means that some economies will

13



support competitive equilibria in which the public lends to the government, and
other economies will support equilibria in which the government lends to the public.
The following classification defines the critical parameter values that divide the set
of economies accordingly. The terminology is borrowed from David Gale [5] who
suggests a similar distinction for the two period overlapping generations model

under certainty:

Definition 9 The economy is Samuelson if:
B
> —
Bz,
and classical if: A
< —.
<5
Given this classification scheme the sets Y and Z are defined below:2?

Definition 10
Let the set Y be given by: Y = {y € [0, E] | E € R}, where, E = aﬁ%ﬁ >0, if
the economy ts Samuelson, and E = 1(1_14)'1{ %) < 0, if the economy is classical.

Let the set Z be given by: Z = {z € [C, D] | [C, D] € R, }, where C is the smaller
root of the quadratic: CB (ﬂ + %) —A (s) C? — A =0, and D is the larger root of:
pA(f+1)-B(8) D*-B=0.

To prove the existence of an equilibrium one must impose bounds on the uncertainty
in the economy that ensure the interest factor will remain within limits for which the
solution to the consumer’s problem is well defined. These bounds were introduced
in the first part of the paper as exogenous restrictions on the set Z. Now that
we have derived the range of Z as functions of the parameters of preferences and
technology, these restrictions must be restated as an assumption about the set (1
that allows one to define a competitive equilibrium for any given choice of 8 and 1.

8To motivate the definition of Z, consider the properties of the difference equation f: This
equation is graphed in figure 1. For any given value of R;_;, the upper bound of the set
f(Re—1,wet1, we, we—1) for {wet1, we, we—1} € 013 is given by the expression R; = f(R¢-1; B, 4, B).
Similarly, the lower bound is given by: R, = f(R:-1; 4, B, A). The bounds of the set Z are defined
by the equations D = f(D; B, A, B) and C = f(C; 4, B, A).

14



Assumption 3 The values of 8,7, A and B satisfy the joint restrictions:
1
< BA(L - py-AY

When A = B, C equals the smaller, and D equals the larger, of v and 1 /B. Tt
follows that for almost all values of 8 and + one can always make the uncertainty in

c>1, D

the economy small enough to meet these conditions. The exception, is the critical
economy in which 4 = (1/8). In this case the only values of A and B that satisfy
assumption 3 are values for which A = B, that is, the uncertainty is degenerate.
In this critical economy, the set Y collapses to the singleton set {0}. The sets Z
and Y, for Samuelson and classical economies, are depicted in figures 1, 2, 3 and 4.
The behavior of the stochastic difference equations f and g that are defined on the
sets Z and Y are best described in terms of the Markov transition functions that
these equations induce on state spaces S and Q. The following lemma defines the
spaces S and Q and establishes that the difference equations f and g can be used
to define transition functions with the required properties.

Lemma 2 Define the spaces S = Z x 0 and Q =Y x 0? and let S and Q be the
Borel sets of S and Q. The difference equations:

R, = f(Rt-l;wt,wt—l,wt—z),

and,

a; = g(at—1; we-1,W—-2),

where f and g are given by ezpressions (26) and (25) define stable Markov transition
functions x : S x S+ [0,1] and ¢ : Q x Q — [0,1].

The proof of this lemma is a direct application of theorem 8.9 in Stokey Lucas
and Prescott [9] page 234. Given the definitions of x and ¢ one can begin to ask
questions about the behavior of the random variables R; and a; as t — oo. For
stochastic models of this kind the appropriate way of characterizing the limiting
behavior of the system is in terms of invariant probability measures. The equations

15
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Figure 2: The Set Y for a Samuelson Economy
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Figure 4: The Set Y for a Classical Economy
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f and g are non-linear but regular enough to establish the existence of, and con-
vergence to, a pair of invariant measures A and 4. The following theorem, proved

in the appendix, states this result:

Theorem 2 Let A and © represent the spaces of probability measures on S, and
O metrized with the total variation norm. Let {\, € A}2, and {6 € O}, be
sequences of probability measures. Define Ay and 0, by recursive application of the

adjoint operators Ty and Ty:
N=T = [ xS, N J=2,00,
A €A
b=T = [ QAT s, i=20 00
6, € ©.

Then {\.} and {8.} converge uniformly to unigue invariant measures A(S) and

0(Q).

At any date ¢, the measure A;(A) gives the probability that the interest factor Ry,
will be in the set Az, where Az is the projection of A onto Z. Similarly, 0,(B) is
the probability that aggregate per-capita assets will be found in By, the projection
of B onto Y. The statement that these sequences of measures converge to invariant
distributions implies that the unconditional probability of observing the state of the
system in any particular set converges to a constant over time, where a complete
description of the state includes current and lagged values of endowments as well

as the values of the endogenous variables R and a.

8 Competitive Equilibria: Existence and Characterization

In the previous section we established the properties of a pair of non-linear difference
equations, f and g. We are now ready to establish that these difference equations
characterize a class of equilibria in the dynastic economy.

18



Theorem 3 Let the Markov transition functions x : Sx S — [0,1] and ¢ : @x Q —
[0,1] be as defined in lemma 2. For all policies in the class:

~b(s") = R(s)b(s)

with values of the instial transfer T in the interval [0, E} the transition function X,
and the policy function:

c"*(s) = (1 - B)[R(s)a™(s) + R(s)]

constitute a competitive equilibrium. The evolution of aggregate assets in equsltbrium

ts described by the transition function .

Theorem 3 establishes the existence of an equilibrium for this economy and
theorem 2 implies that interest factors and per-capita assets converge to an invariant
distribution. It is also possible to establish certain characteristics of these invariant

distributions.

Theorem 4 If the economy ss Samuelson then the snvariant measure 0 places all
probability mass at zero. The support of the invariant measure X ts the closed
interval [/SAB’ -ﬁ%] If the economy is classical then the support of 0 is a closed interval
[a,b] C Y, where E < a < b <0, and the support of ) is a closed interval [c,d] C Z,
where 1 <c<y<d<1/B.

Theorem 4 states that in a Samuelson economy the value of per-capita outside
assets converges to zero with probability oneast — co. In a classical economy the
invariant measure # that describes the unconditional probability of observing any
particular value of per-capita outside assets has a support which is an interval of
the negative real line.

These results are fairly easy to understand by inspecting figures 2 and 4. The
proof is omitted. Notice from figure 2 that, in a Samuelson economy, a; < a;+; for
all a, € Y and from the geometry of the figure it is clear that a; converges to zero
for all realizations of the sequence of endowments. In the classical economy, for all
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a; € Y assets converge to an interval that is bounded by the intersection of the
functions g(a; A, B) and g{a; B, A) with the 45 degree line.

The theorem implies that, in a classical economy, the support of the invariant
measure A contains 4 and, in the Samuelson economy, it contains (1/3). This result
is analogous to known results about two period overlapping generations economies
for which, in a classical economy, the interest factor converges to the growth factor

and, in a Samuelson economy, it converges to the inverse of the discount factor.

9 Dynasties and Representative Agents

The first order difference equations that characterize equilibria in the dynastic econ-
omy are reminiscent of the two period overlapping generations economy. Since the
behavior of this model is very different from that of representative agent economies
it is instructive to examine the behavior of equations (26) and (25) as the parameter
~ converges to one from above. If one holds constant the values of A, B and 8 and
lowers 4 the set of economies will pass from Samuelson to classical. Continuing to
lower ~ towards one, the value of E in figure 4 becomes more and more negative.
For all values vy > 1 there exists a dynastic economy for which the policy of rolling
over the value of (negative) government debt will support an equilibrium in which
the value of per-capita assets is finite in all states. But for v =1 the proof of the
existence of an equilibrium breaks down as one can no longer find a finite set Y to
which the stochastic difference equation g converges. When 4 = 1 equation (25)
becomes linear. The construction of equation (26) involves division by v — 1, (see
the proof of theorem 3 in the appendix) and when v =1 this equation reduces to:
_ W

B Bwi—2 '

For the case of v = 1 the economy is a representative agent economy. In this

R (27)

case the policy of rolling over a fixed debt is infeasible since it implies that the
net present value of private borrowing is unbounded. Ricardian equivalence, in the
zero growth economy, implies that the policy of an initial lump-sum tax or transfer

must eventually be repaid in present value terms.
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A Proofs

A.1 Proof of Theorem 1

This appendix provides a sketch of the proof that the closed form solution to the
value function described in the text is valid.

Al1l Part1l

Given the assumption that consumption rmains non-negative, the proposed solution
for v* is:

v*'(s') = F(Q(s)W (). (28)
Taking expectations of v*(s') one period in advance, using the asset accumulation

rule one obtains:
Elv'()] = E[F(Q()R(s))|[R(s)a(s) + w(s) — e(s)] + E[h(s)FIQ(s);  (29)
which simplifies, using the definitions of Q and h to

E[v(s)] = Q(s)[W (s) — e(s)]- (30)

By substituting (30) into the definition of the value function and maximizing over
¢ one obtains the first order condition:

(1-B)[c* ()] [Q(s) (W (5) — " ()} — BR(S) [€* () (Qs) (W (5) — " ()] = 0

(31)
which may be rearranged to give the functional form (13). By substituting the
solution for ¢*(s) at a maximum (equation(13)), back into the definition of the
value function one obtains the expression:

v*(s) = F[Q(s)|W (s). (32)

This establishes that v# is a fixed point of equation 8. O To complete the proof
one must establish that vr = F(Qr)Wr is optimal as T — oo. The following lemma

helps to establish this result.
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Lemma 3 The present value of the limiting value of assets in the optimal plan is
equal to zero:
Jim Play =0, for all ¢ € .
—00

Proof
Let 2z = wy — he. The variable z lies in a compact set since ) and H are compact, it
follows that max z exists and is finite. If the agent follows the optimal consumption

plan, the value of assets a},, is given by the expression:
at,, = Ria; + z.

Iterating this expression from period 1 to period T and multplying through by P{

yields the expression:

.
PTray,; = BTRia} + 5 BT Ptz

s=1

Now let § = max{8,1/C} < 1. Then it follows that

T T
BTRia} +)_ BT Ptz < 6TRia} + 6T ) maxz.

s=1 s=1
Since the limit of each term of this expression converges to zero as T — oo it follows
that limp_e PTay = 0.0

A.1.2 The Value of Deviating From the Optimal Plan

To establish that the solution to the value function equation is also the solution
to the sequence problem in which one forms sequences of contingent plans that
maximize utility, I will obtain an expression for the value of deviating from the
proposed optimal plan for the first T — 1 periods. Letting T — oo, I will show
that, the limit of the value of any such sequence of deviations exists and is bounded
above by zero.

Let {c*} be the proposed optimal sequence of contingent plans and let {¢”} be
some other sequence that coincides with {c'} for all dates t > T. Let ul be the
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value of {cT} at date t and let v; be the value of {c'}, also at date t. From the
definitions of v and u it follows that:

vy = [eh_ P [Er-rvr)?, (33)
wI_ = [er-1]* P [Er-1vr)’. (34)

Expanding uT_, around c}_,, exploiting the concavity of u it follows that :

(cr_y — er-1)(1 — B)[Q:-1Wr-1B8)°
S N (e (#5)
which simplifies to:
Ur-1— u$-1 > (er-1— CT-I)F(QT—l)- (36)

By substituting out from the asset accumulation rule (4) one may replace the

consumption terms in this expression by the value of assets;
vr-1 — wl_y > [Rr-1(et-, — ar-1) — (af — ar)] F(@1-1)- (37)

Taking expected values at date T-2 it follows that:

Er_a(vp_1 — uF_)) > Qr-2(a}_, — ar-1) — Er-2(ay — ar) F(Qr-1)- (38)
One proceeds by expanding u]_, around (et_j, vr-;) to obtain the expression:

F(Qr-2)
———FEr_

Qr-2
Using (4) to eliminate (ci_, — cr-2) and (38) to eliminate Er_s(vr-1 — uk_,) it
follows that:

vz — Ug_y > F(Qr-2)(cT_, —er-2) + 2[v7-1 — UT_4]- (39)

Er_s(vi-2 — “;r—z) > Qr_s(ar_, —ar-2) — ET—SELQ%QET—zF(QT-I)(G"P — ar).
(40)
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By proceding backwards recursively from period T to period 1, recognizing that
a} = a; = 0 one arrives at the following expression for the value of deviating from

the proposed optimal path for the first T-1 periods:

15  E(@)

—ul > F(Qi) 1:[ E, o (ar — a3). (41)

Expanding the bracket on the right-hand-side of (41) yields two terms, the first of

which is given by the expression:

T-1
F(@) 1 £ s (42)

But notice from the definition of Q, equation (6), removing the expectations op-

erators from (42) one as the identity:

T-1 F .
R F(@1) I] Q(Q Jap = Pl lar. (43)
=2 s—1
Assumption 2 implies that:
'I]im Pl lap >0, (44)

which bounds this expression in every state. It follows from averaging across states
that expression (42) must be greater than or equal to zero.

A similar argument may be applied to the second term that arises from expanding
the right-hand-side of (41):

T-1
- lim F(@1) [ Ee-s F(Q )a-'r (45)
=2 Qa—l
Notice that: Tt
= F 8 * - *
RF(@) [T 2y = I, (46)
s=2 Lo
hence, if one can show that:
'I!EEo P;r—la‘} =0, (47)

it will have been demonstrated that the expression (45), which averages these terms
across states, must also equal zero. But this result is established in lemma 3. Hence
the value of any feasible deviation from the optimal plan is bounded above by zero
O
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A.2 Proof of Theorem 2

Given the following lemma (equivalent to Condition M in [9]) the proof follows
directly from Stokey Lucas and Prescott theorem 11.12 page 350.

Lemma 4 Let xN(s,U) be the probability of reaching the set U € § from s € S in
N steps. Let S — U be the complement of U in S. There ezists an € > 0 and an
integer N > 1 such that for any U € §,

either xN(s,U)>¢, all s€8, or xN(s,$ -U)>e¢, all s€8.

Lemma 4 says that every set in $ is visited with probability greater than or equal to
e in N(¢) steps from every point in S: or its complement is visited with probability
€ in N(e) steps from every point in S. The proof of lemma 4 relies on the geometry
of figure 1.

A.3 Proof of Lemma 4

First, note that any constant sequence {w; = w}, occurs with positive probability
€(N). Since, for large enough N, any constant sequence will bring the interest factor
within a distance 6(N) of 1/8 it follows that from any initial R, in the set [C, D]
there is positive probability of coming within & of the point 1/8 in N (6, R,) steps.
Now define the set (e, k) to be the open interval:

(e,h) = ( f(1/B; A, B, B), f(1/8, B, A, A)).

The set (e, h) defines points that can be arrived at with positive probabilty from
any initial s; € S by constant sequences of very low endowments followed by a
large endowment, or by sequences of very large endowments followed by a small
endowment.

Since, by assumption 1, u puts positive weight on all values of w € [A,B] it
follows that any point g in the interval (e,1/f] can be reached in finite steps from
any R; in {R; <| 1/ < R, < D} by sequences of the form {B,B,...wn(q)} and
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from any point in {R; | C < R, < 1/8} by sequences of the form {A, 4,...wn(q)}-
A similar argument holds for points r in the interval [1/8, k). It follows that for any
set U C (e, k) one can find a finite N and a positive € such that the probability of
entering U from any R; € [C, D] is greater than or equal to €. H U C {S — (e,h)}
then there is positive probability of entering S — U in N steps from any R,.0

Proof of Theorem 3

This appendix proves that the difference equations (25) and (26) characterize com-
petitive equilibria.

Part 1: The Asset Evolution Equation

Agents with the preferences described by equation (8) must form an expectation of
the value of average human wealth in order to compute their current consumption.
The equilibria that I focus on in this paper are constructed by assuming that human

wealth is described by the stochastic difference equation:
’—lt+1 = Rt+1[’_1e - Wt], (48)

with initial condition:

~T. (49)

For any transition function x describing the evolution of R;, equation (48) defines
a function h that satisfies the functional equation given in definition (7). Providing
f remains bounded it must represent the unique solution to this equation.

Given that h evolves in this way, the market clearing condition in subsequent
periods will impose a relationship that must hold between the value of financial
assets and the value of human wealth: ¢; = wy, = (1 — 8)[Riay + hi] or, rearranging
this expression:

hy = —— — Ria:. (50)
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Substituting A into equation (48) and using the budget identity vyai4+1 = Ria to
eliminate R;;; one arrives at the difference equation:

a _ AWy
"7 Bweer — (v = 1)(1 - B)at]’

which is the expression given in equation (25). One still needs to check that A

remains bounded. Since h is the function of R:a:, given by equation (50), and
since Ria; = Ya¢41, from the evolution of aggregate assets, one need only show that
aggregate assets remain bounded. But since g: Y — Y it follows that for Roap €Y

that a; remains bounded for all t. O

Part 2: The Interest Factor Evolution Equation

Multiply both sides of equation (25) by 7, divide both sides by a;-; and use the °
definition of the evolution of aggregate assets: ya; = Ri_1a;- to obtain the expres-

sion:
Wy--1

= Pwz - (=1 - Baa]

Rearranging this equation and substituting it into equation 25 one arrives at dif-

Ry

ference equation in R;:

Wy

fa= wea[B + 1] = B(Re-a/7)wr—2’

which is the expression given in equation (26). O

Part 3: The Behavior of Individual Consumption

The conditions of theorem 1 rquire one to check that, in any proposed equilibrium,
the consumption of every dynasty remains positive. The consumption of dynasty 7
is given by the expression:

c: = (1 - ﬂ)wtf,

where,
W: = Rta: + Tlg.
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But when human wealth is given by equation (48), it follows that the family’s

wealth, W, evolves according to the expression:
W = R(W_, - c-1)s
and when ¢] is chosen optimally:
Wtf = fRW.,.
Restating this equation in terms of consumption:
c; = BRicy_;.

Since the family’s initial consumption is a fraction of average human wealth in its
first period of life, since average human wealth is positive in all states, and since
interest factors remain positive in every state, it follows individual consumption

remains positive in every realization of ¢ for all dynasties. O
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